Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (10): 1219-1226    DOI: 10.3724/SP.J.1037.2013.00143
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF 5052 AND 6061 ALUMINUM ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA
SUN Feilong, LI Xiaogang, LU Lin, CHENG Xuequn, DONG Chaofang, GAO Jin
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

SUN Feilong, LI Xiaogang, LU Lin, CHENG Xuequn, DONG Chaofang, GAO Jin. CORROSION BEHAVIOR OF 5052 AND 6061 ALUMINUM ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA. Acta Metall Sin, 2013, 49(10): 1219-1226.

Download:  PDF(3422KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum alloys have been found ever-increasing applications in marine environments. The study on the corrosion of aliminum alloys using field test was started in USA in 1940s.Such studies, however, were carried out in China untill 1980s. Although the corrosion  behaviours of 11 kinds of aluminum alloys were investigated exposed to tide, splash and full immersion zones at Qingdao, Zhoushan, Yulin and Xiamen area of China, the corrosion behaviour of materials in deep ocean environments is different from that in shallow marine environments. In this work, the corrosion behavior of 5052 and 6061 aluminum alloys in 800 and 1200 m deep ocean environments of South China Sea was studied using field test. The morphology and composition of corrosion products were investigated using SEM, EDS and XRD. The results indicated that severe local corrosion took place in the aluminum alloys. The corrosion products were composed of Al2O3, SiO2 and a small amount of Mg3(SO4)2(OH)2 and NaCl.The crevice corrosion perforation occurred on the edge of 5052 and 6061 samples.And the groove corrosion pits formed on the cross section of 5052 sample.Pitting corrosion took place on the main area of 5052 and 6061 samples.The size and density of pits formed on 6061 aluminum alloy were higher than those on 5052 aluminum alloy.And the pitting corrosion perforation formed on 6061 aluminum alloy in 800 m deep ocean.Comparing with the data of literatures,the maximum pit depths of 5052 and 6061 aluminum alloys decreased first and then increased with depth increased. The maximum value of pit depth appeared at about 800 m deep ocean. This is due to the amount of dissolved oxygen is the lowest in 800 m deep ocean, which promotes local corrosion.

Key words:  aluminum alloy      pitting corrosion      deep ocean      field test     
Received:  28 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00143     OR     https://www.ams.org.cn/EN/Y2013/V49/I10/1219

[1] Southwell C R, Alexander A L, Hummer C W. Mater Prot, 1965; 4: 30

[2] Schumacher M. Sea Water Corrosion Handbook. New Jersey: Park Ridge, 1979: 150
[3] Sparks C P, Cabillic J P, Schawann J C. J Energy Resour--Trans ASME, 1983: 105: 282
[4] Dexter S C. Handbook of Oceanographic Engineering Materials. New York: Whiley-Interscience, 1979: 23
[5] Dexter S C. Corrosion, 1980; 36: 423
[6] Li Y, Xing S H, Li X, Wei X J. Chin J Nonferrous Met, 2006; 16: 2083
(李焰, 邢少华, 李鑫, 魏绪钧. 中国有色金属学报, 2006; 16: 2083)
[7] Li Y, Xing S H, Li X, Wei X J. Chin J Nonferrous Met, 2007; 17: 1247
(李焰, 邢少华, 李鑫, 魏绪钧. 中国有色金属学报, 2007; 17: 1247)
[8] Li Y, Xing S H, Li X, Wei X J. Chin J Nonferrous Met, 2007; 17: 1527
(李焰, 邢少华, 李鑫, 魏绪钧. 中国有色金属学报, 2007; 17: 1527)
[9] Zhu X L, Li L Y, Xu J. Chin J Nonferrous Met, 1998; 8 (suppl 1): 210
(朱小龙, 林乐耘, 徐杰. 中国有色金属学报, 1998; 8(增刊1): 210)
[10] Huang G Q. Corros Prot, 2002; 23: 18
(黄桂桥. 腐蚀与防护, 2002; 23: 18)
[11] Huang G Q. Corros Prot, 2002; 23(2): 47
(黄桂桥. 腐蚀与防护, 2002; 23(2): 47)
[12] Huang G Q. Corros Prot, 2003; 24(2): 47
(黄桂桥. 腐蚀与防护, 2003; 24(2): 47)
[13] Mu Z J, Lin Z J, Zhuang Y, Chen X F, Wang J J, Lin L Y, Zhao Y H. Dev Appl Mater,2007; 22(5): 20
(穆振军, 林志坚, 庄炎, 陈翔峰, 王晶晶, 林乐耘, 赵月红. 材料开发与应用, 2007; 22(5): 20)
[14] Lin L Y, Zhao Y H. Chin J Nonferrous Met, 2003; 13: 1246
(林乐耕, 赵月红. 中国有色金属学报, 2003; 13: 1246)
[15] Yin Z X, Chen Y C, Zhou H J. J Guizhou Univ Technol (Nat Sci Ed), 2007; 36: 18
(尹卓湘, 陈延超, 周红娟. 贵州大学学报(自然科学版), 2007; 36: 18)
[16] Lyndon J A, Gupta R K, Gibson M A, Birbilis N. Corros Sci, 2013; 70: 290
[17] Jain S, Lim M L C, Hudson J L, Scully J R. Corros Sci, 2012; 59: 136
[18] Yasakau K A, Zheludkevich M L, Lamaka S V, Ferreira M G S. Electrochim Acta, 2007; 52: 7651
[19] Liang W J, Rometsch P A, Cao L F, Birbilis N, Corros Sci, In press, DOI:http://dx.doi.org/10.1016/j.corsci.2013. 06.035
[20] Mujibur Rahman A B M, Kumar S, Gerson A R. Corros Sci, 2008; 50: 1267
[21] Abodi L C, DeRose J A, Damme S V, Demeter A, Suter T, Deconinck J.Electrochim Acta, 2012; 63: 169
[22] Guillaumin V, Mankowski G. Corros Sci, 2000; 42: 105
[23] Frankel G S. J Electrochem Soc, 1998; 145: 2186
[24] Hoar T P, Mears D C, Rothwell G P. Corros Sci, 1965; 5: 279
[25] Lin L F, Chao C Y, Macdonald D D. J Electrochem Soc, 1981; 128: 1194.
[26] Uhlig H H. J Electrochem Soc, 1950; 97: 215C
[27] Beccaria A M, Poggi G. Br Corros J, 1985; 20: 1836
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[4] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[5] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[6] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[7] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[8] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[9] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[10] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[11] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[12] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
[13] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[14] SUN Jiaxiao, YANG Ke, WANG Qiuyu, JI Shanlin, BAO Yefeng, PAN Jie. Microstructure and Mechanical Properties of 5356 Aluminum Alloy Fabricated by TIG Arc Additive Manufacturing[J]. 金属学报, 2021, 57(5): 665-674.
[15] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
No Suggested Reading articles found!