Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 49-56    DOI: 10.3724/SP.J.1037.2013.00417
Original Articles Current Issue | Archive | Adv Search |
LOCALIZED CORROSION OF ALUMINUM ALLOY 2024 EXPOSED TO SALT LAKE ATMOSPHERIC ENVIRONMENT IN WESTERN CHINA
WANG Binbin, WANG Zhenyao(), CAO Gongwang, LIU Yanjie, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WANG Binbin, WANG Zhenyao, CAO Gongwang, LIU Yanjie, KE Wei. LOCALIZED CORROSION OF ALUMINUM ALLOY 2024 EXPOSED TO SALT LAKE ATMOSPHERIC ENVIRONMENT IN WESTERN CHINA. Acta Metall Sin, 2014, 50(1): 49-56.

Download:  HTML  PDF(10179KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Localized corrosion behavior of aluminum alloy 2024 with/without cladding exposed to salt lakes atmospheric environment in western china for 4 a was investigated. The depth of pitting, corrosion products, morphology of surface and cross-section, and corrosion potential were analyzed by SEM/EDS, OM, XRD and electrochemical analysis system. The results showed that 2024 suffered severe pitting corrosion. The cladding layer of aluminum alloy 2024 exposed for 2 a had been penetrated. Depth of pitting of aluminum alloy 2024 without cladding after 2 a exposure had reached 320 μm; meanwhile, few pitting that penetrated the whole substrate of aluminum alloy 2024 without cladding had been observed. A main corrosion product of aluminum alloy 2024 with/without cladding—[Mg1-xAlx(OH)2]x+ (Cl-, CO2-)x·mH2O (layered double hydroxides, LDH) was determined. Also, the results of electrochemistry indicated that the corrosion potential of aluminum alloy 2024 decreased gradually with the concentration of Cl- increasing. The effects of factors of salt lake atmospheric environments, corrosion product and Cl- concentration on the corrosion behavior of 2024 with/without cladding were discussed.

Key words:  aluminum alloy 2024      salt lake      atmospheric corrosion      pitting corrosion      corrosion product     
Received:  16 July 2013     
ZTFLH:  TG178  
Fund: Supported by National Natural Science Foundation of China No.51131007 and Foundation Project of National Defense Technology No.H102011B002

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00417     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/49

Fig.1  

无包铝的2024铝合金点蚀坑深度随时间的变化曲线

Fig.2  

暴露不同周期的无包铝的2024铝合金点蚀坑截面形貌图

Fig.3  

暴露1 a后2024的朝天面包铝层腐蚀截面形貌

Fig.4  

暴露2 a后2024的包铝层截面形貌

Fig.5  

暴露2 a的2024包铝层下基体的晶间腐蚀

Fig.6  

暴露2 a包铝的2024铝合金的表面和截面形貌及腐蚀产物EDS分析

Fig.7  

暴露不同时间的2024试样表面腐蚀产物及土壤物质XRD谱

Fig.8  

2024铝合金在稀释不同倍数盐湖水中开路电位随时间的变化

Fig.9  

2024铝合金在不同稀释倍数盐湖水中的阳极极化曲线

[1] Liu J A,Xie S S. Exploitation and Application of Aluminium Alloy. Beijing: Metallurgical Industry Press, 2011: 71
(刘静安,谢水生. 铝合金材料应用与开发. 北京: 冶金工业出版社, 2011: 71)
[2] Vargel C. Corrosion of Aluminium. Paris: Dunod, 2004: 235
[3] Cao C N. Material Natural Environmental Corrosion of China. Beijing: Chemical Industry Press, 2005: 108
(曹楚南. 中国材料的自然环境腐蚀. 北京: 化学工业出版社, 2005: 108)
[4] Lashermes M, Guilhuaudis A, Reboul M, Trentelivers G. In: Ailor W H ed., Atmospheric Corrosion, New York: John Wiley and Sons, 1982: 353
[5] Dean S W, Anthony W H. In: Dean S W, Lee T ed., Degradation of Metals in Atmosphere STP 965, Philadelphia: American Society of Testing and Materials, 1988: 191
[6] Sun S Q, Zheng Q F, Li D F, Wen J G.Corros Sci, 2009; 51: 719
[7] Sun S Q, Zheng Q F, Li D F, Hu S Q, Wen J G.Corros Sci, 2011; 53: 2527
[8] Cheng Y L, Zhang Z, Cao F H, Li J F, Zhang J Q, Wang J M, Cao C N. Corros Sci, 2004; 46: 1649
[9] Shi Y Y, Zhang Z, Su J X, Cao F H, Zhang J Q.Electrochim Acta, 2006; 51: 4977
[10] Wang Z Y, Ma T, Han W, Yu G C. Chin JNonferrous Met, 2007; 17: 326
[11] Zhang Z, Song S Z, Mo S F.Acta Metall Sin, 2004; 40: 754
(张 正, 宋诗哲, 墨淑芬. 金属学报, 2004; 40: 754)
[12] Chang H, Han E H, Wang J Q, Ke W.Acta Metall Sin, 2005; 41: 556
(常 红, 韩恩厚, 王俭秋, 柯 伟. 金属学报, 2005; 41: 556)
[13] Sheng H, Dong C F, Xiao K, Li X G.Acta Metall Sin, 2012; 48: 414
(生 海, 董超芳, 肖 葵, 李晓刚. 金属学报, 2012; 48: 414)
[14] An B G, Zhang X Y, Song S Z, Li H X, Han E H. J Chin Soc Corros Prot, 2003; 23: 167
(安百刚, 张学元, 宋诗哲, 李洪锡, 韩恩厚. 中国腐蚀与防护学报, 2003; 23: 167)
[15] Zhang X Y, Sun Z H, Liu M H, Tang Z H, Li B.J Chin Soc Corros Prot, 2007; 27: 354
(张晓云, 孙志华, 刘明辉, 汤智慧, 李 斌. 中国腐蚀与防护学报, 2007; 27: 354)
[16] Sun S Q, Zhao Y B, Zheng Q F, Li D F. J Chin Soc Corros Prot, 2012; 32: 195
(孙霜青, 赵予兵, 郑弃非, 李德富. 中国腐蚀与防护学报, 2012; 32: 195)
[17] Blanc C, Lavelle B, Mankowski G.Corros Sci, 1997; 39: 495
[18] Buchheit R G, Grant R P, Hlava P F, Mckenzie B, Zender G L. J Electrochem Soc, 1997; 144: 2621
[19] Guillaumin V, Mankowski G.Corros Sci, 1999; 41: 421
[20] Obispo H M, Murr L E, Arrowood R M, Trillo E A.J Mater Sci, 2000; 35: 3479
[21] Zheng X Y,Zhang M G,Xu C,Li B X. Saline Mark of China. Beijing: Science Technology Press, 2002: 1
(郑喜玉,张明刚,徐 昶,李秉孝. 中国盐湖志. 北京: 科学技术出版社, 2002: 1)
[22] Wang Z Q. Pickled Soil of China. Xi'an: Shanxi Renmin Press, 1994: 251
(王遵亲. 中国盐渍土. 西安: 陕西人民出版社, 1994: 251)
[23] Xiao Y D, Wang G Y, Li X G, Lin A, Zhang S P, Qin X Z, Wang Z Y.J Chin Soc Corros Prot, 2003; 23: 248
(萧以德, 王光雍, 李晓刚, 林 安, 张三平, 秦晓洲, 王振尧. 中国腐蚀与防护学报, 2003: 23: 248)
[24] Zheng Q F, Sun S Q, Wen J G, Li D F.Chin J Nonferrous Met, 2009; 19: 353.
(郑弃非, 孙霜青, 温军国, 李德富. 中国有色金属学报, 2009; 19: 353)
[25] Blücher D B, Svensson J E, Johansson L G.Corros Sci, 2006; 48: 1848
[26] Zheng Q F, Sun S Q, Wen G J, Li D F. J Chin Soc Corros Prot, 2010; 30: 72
(郑弃非, 孙霜青, 温军国, 李德富. 中国腐蚀与防护学报, 2010; 30: 72)
[27] Wang B B, Wang Z Y, Han W, Ke W. Corros Sci, 2012; 59: 63
[28] Gou G J, Ma P H, Chu M X.Acta Phys Chim Sin, 2004; 20: 1357
[29] Wang B B, Wang Z Y, Han W, Wang C, Ke W. Chin J Nonferrous Met, 2013; 23: 1199
[30] Buchheit R G, Martinez M A, Montes L P.J Electrochem Soc, 2000; 147: 119.
[31] Cole I S, Azmat N S, Kanta A, Venkatraman M.Int Mater Rev, 2009; 54: 117
[32] Wexler A S, Seinfeld J H. Atmos Environ, 1991; 25A: 2731
[33] Ge Z Z, Wexler A S, Johnston M V. J Colloid Interf Sci, 1996; 183: 68
[34] Ge Z Z, Wexler A S, Johnston M V. J Phys Chem, 1998; 102: 173
[35] Kelly J T, Wexler A S, Chan C K, Chan M N.Atmos Environ, 2008; 42: 3717
[36] Kelly J T, Wexler A S.Atmos Environ, 2006; 40: 4450
[37] Prosek T, Lversen A, Taxén C, Thierry D.Corrosion, 2009; 65: 105
[38] Xiao H S, Dong J L, Wang L Y, Zhao L J, Wang F, Zhang Y H.Environ Sci Technol, 2008; 42: 8698
[39] Wise M E, Biskos G, Martin S T, Russell L M, Buseck P R.Aerosol Sci Technol, 2005; 39: 884
[40] Paredes S P, Valenzuela M A, Fetter G, Flores S O. J Phys ChemSolids, 2011; 72: 914
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
[4] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[5] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[6] HUANG Songpeng, PENG Can, CAO Gongwang, WANG Zhenyao. Corrosion Behavior of Copper-Nickel Alloys Protected by BTA in Simulated Urban Atmosphere[J]. 金属学报, 2021, 57(3): 317-326.
[7] LV Chenxi, SUN Yangting, CHEN Bin, JIANG Yiming, LI Jin. Influence of Potentionstatic Pulse Technique on Pitting Behavior and Pitting Resistance of 317L Stainless Steel[J]. 金属学报, 2021, 57(12): 1607-1613.
[8] LIU Yuwei, ZHAO Hongtao, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel and Weathering Steel in Nansha Marine Atmosphere[J]. 金属学报, 2020, 56(9): 1247-1254.
[9] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[10] WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand[J]. 金属学报, 2020, 56(1): 119-128.
[11] Xingchen CHEN, Jie WANG, Deren CHEN, Shuncong ZHONG, Xiangfeng WANG. Effect of Na on Early Atmospheric Corrosion of Al[J]. 金属学报, 2019, 55(4): 529-536.
[12] Kaiqiang LI, Lujia YANG, Yunze XU, Xiaona WANG, Yi HUANG. Influence of SO42- on the Corrosion Behavior of Q235B Steel Bar in Simulated Pore Solution[J]. 金属学报, 2019, 55(4): 457-468.
[13] FENG Hao,LI Huabing,LU Pengchong,YANG Chuntian,JIANG Zhouhua,WU Xiaolei. Investigation on Microbiologically Influenced Corrosion Behavior of CrCoNi Medium-Entropy Alloy byPseudomonas Aeruginosa[J]. 金属学报, 2019, 55(11): 1457-1468.
[14] Mingxiao GUO, Chen PAN, Zhenyao WANG, Wei HAN. A Study on the Initial Corrosion Behavior of Carbon Steel Exposed to a Simulated Coastal-Industrial Atmosphere[J]. 金属学报, 2018, 54(1): 65-75.
[15] Hui ZHANG, Yanxia DU, Wei LI, Minxu LU. Investigation on AC-Induced Corrosion Behavior and Product Film of X70 Steel in Aqueous Environment with Various Ions[J]. 金属学报, 2017, 53(8): 975-982.
No Suggested Reading articles found!