|
|
Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy |
Sensen HUANG1,2,Yingjie MA1( ),Shilin ZHANG1,Min QI1,Jiafeng LEI1,Yaping ZONG2,Rui YANG1 |
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
|
Cite this article:
Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy. Acta Metall Sin, 2019, 55(6): 741-750.
|
Abstract During the thermal treatments of α+β titanium alloys in (α+β) phase field, alloying element partitioning effect takes place accompanying with the α?β transformation, which results in the segregation of α stabilizing elements (Al, O) and β stabilizing elements (V, Mo, etc.) into the corresponding phases respectively. The element partitioning effect will further affect the microstructure characteristics (phase constitution, microstructure size), plastic deformation modes and the final mechanical properties of the alloy. In this work, the influences of solution temperature and cooling rate on the element partitioning behavior during solution process of Ti-6Al-4V alloy in (α+β) phase field were investigated. The element concentrations in primary α phase (αp) and β transformed region (βt) were characterized by EPMA technique. The microstructural variation of βt with respect to solution temperature was analyzed. It was found that βt showed an obvious increase of Al content and decrease of V content with the increasing of solution temperature, while the αp exhibited less noticeable change, which led to the reduction of concentration difference between the two phases. Under the same solution temperature, the microstructures and element distributions at different cooling rates (water quenching, air cooling, furnace cooling) were exhibited. The slow cooling processing especially furnace cooling would induce higher volume fraction of αp phase and more pronounced element partitioning. The microstructural characteristics of βt cooled from different solution temperatures were further analyzed. During the water or air cooling process, the transformations of β→matensite/αs happened, and the sizes of martensite or αs were postulated to be dependent on the element concentration of β phase. The properties of local microstructure (αp, βt) were further measured by nanoindentation. It indicates that the intrinsically anisotropic character of the hexagonal crystal structure (hcp) of the αp phase has decisive consequences for the properties, while the elastic modulus and hardness of βt calculated by nanoindentation are mainly dominated by the width of αs lamellas. On the basis of the above results, the relationship between solution temperature, element concentration of local microstructure, microstructure size and mechanical properties of local microstructure was finally discussed.
|
Received: 08 October 2018
|
|
Fund: Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB06050100);National Key Research and Development Program of China(Nos.2016YFC0304201);National Key Research and Development Program of China(2016YFC0304206);National Natural Science Foundation of China(No.51871225) |
[1] | Wang F, Cui W C. Experimental investigation on dwell-fatigue property of Ti-6Al-4V ELI used in deep-sea manned cabin [J]. Mater. Sci. Eng., 2015, A642: 136 | [2] | Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103 | [3] | Lütjering G. Property optimization through microstructural control in titanium and aluminum alloys [J]. Mater. Sci. Eng., 1999, A263: 117 | [4] | Zhang Z Q, Dong L M, Yang Y, et al. Influences of quenching temperature on the microstructure and deformation behaviors of TC16 titanium alloy [J]. Acta Metall. Sin., 2011, 47: 1257 | [4] | (张志强, 董利民, 杨 洋等. 淬火温度对TC16钛合金显微组织及变形行为的影响 [J]. 金属学报, 2011, 47: 1257) | [5] | Lütjering G, Williams J C. Titanium [M]. 2nd Ed., Berlin Heidelberg: Springer, 2007: 211 | [6] | Barriobero-Vila P, Requena G, Buslaps T, et al. Role of element partitioning on the α-β phase transformation kinetics of a bi-modal Ti-6Al-6V-2Sn alloy during continuous heating [J]. J. Alloys Compd., 2015, 626: 330 | [7] | Bruneseaux F, Aeby-Gautier E, Geandier G, et al. In situ characterizations of phase transformations kinetics in the Ti17 titanium alloy by electrical resistivity and high temperature synchrotron X-ray diffraction [J]. Mater. Sci. Eng., 2008, A476: 60 | [8] | Semiatin S L, Knisley S L, Fagin P N, et al. Microstructure evolution during alpha-beta heat treatment of Ti-6Al-4V [J]. Metall. Mater. Trans., 2003, 34A: 2377 | [9] | Popov A A, Illarionov A G, Stepanov S I, et al. Effect of quenching temperature on structure and properties of titanium alloy: Structure and phase composition [J]. Phys. Met. Metallogr., 2014, 115: 507 | [10] | Song M, Ma Y J, Wu J, et al. Effect of cooling rate on microstructure and properties of Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si alloy [J]. Chin. J. Nonferrous Met., 2010, 20(suppl.): 565 | [10] | (宋 淼, 马英杰, 邬 军等. 冷却速率对Ti-5.8Al-3Mo-1Cr-2Sn-2Zr-1V-0.15Si合金组织及性能的影响 [J]. 中国有色金属学报, 2010, 20(增刊):565) | [11] | Zeng L R, Chen H L, Li X, et al. Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy [J]. J. Mater. Sci. Technol., 2018, 34: 782 | [12] | Fitzner A, Prakash D G L, da Fonseca J Q, et al. The effect of aluminium on twinning in binary alpha-titanium [J]. Acta Mater., 2016, 103: 341 | [13] | Xue Q, Ma Y J, Lei J F, et al. Mechanical properties and deformation mechanisms of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2507 | [14] | Xue Q, Ma Y J, Lei J F, et al. Evolution of microstructure and phase composition of Ti-3Al-5Mo-4.5V alloy with varied β phase stability [J]. J. Mater. Sci. Technol., 2018, 34: 2325 | [15] | Chen Q, Ma N, Wu K S, et al. Quantitative phase field modeling of diffusion-controlled precipitate growth and dissolution in Ti-Al-V [J]. Scr. Mater., 2004, 50: 471 | [16] | Gao X X, Zeng W D, Zhang S F, et al. A study of epitaxial growth behaviors of equiaxed alpha phase at different cooling rates in near alpha titanium alloy [J]. Acta Mater., 2017, 122: 298 | [17] | Elmer J W, Palmer T A, Babu S S, et al. Phase transformation dynamics during welding of Ti-6Al-4V [J]. J. Appl. Phys., 2004, 95: 8327 | [18] | Elmer J W, Palmer T A, Babu S S, et al. In situ observations of lattice expansion and transformation rates of α and β phases in Ti-6Al-4V [J]. Mater. Sci. Eng., 2005, A391: 104 | [19] | Zhang Z, Wang Q J, Mo W. Metallurgy and Heat Treatment of Titanium Alloys [M]. Beijing: Metallurgical Industry Press, 2009: 7 | [19] | (张 翥, 王群骄, 莫 畏. 钛的金属学和热处理 [M]. 北京: 冶金工业出版社, 2009: 7) | [20] | Mishin Y, Herzig C. Diffusion in the Ti-Al system [J]. Acta Mater., 2000, 48: 589 | [21] | Tarzimoghadam Z, Sandl?bes S, Pradeep K G, et al. Microstructure design and mechanical properties in a near-α Ti-4Mo alloy [J]. Acta Mater., 2015, 97: 291 | [22] | Davis R, Flower H M, West D R F. Martensitic transformations in Ti-Mo alloys [J]. J. Mater. Sci., 1979, 14: 712 | [23] | Srivastava D, Madangopal K, Banerjee S, et al. Self accomodation morphology of martensite variants in Zr2.5-wt%Nb alloy [J]. Acta Metall. Mater., 1993, 41: 3445 | [24] | Grosdidier T, Combres Y, Gautier E, et al. Effect of microstructure variations on the formation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy [J]. Metall. Mater. Trans., 2000, 31A: 1095 | [25] | Peng C, Zhang S Y, Ren L, et al. Effect of cooling rate on microstructure and properties of a Cu-containing titanium alloy [J]. Acta Metall. Sin., 2017, 53: 1377 | [25] | (彭 聪, 张书源, 任 玲等. 冷却速率对含Cu钛合金显微组织和性能的影响 [J]. 金属学报, 2017, 53: 1377) | [26] | Rugg D, Britton T B, Gong J, et al. In-service materials support for safety critical applications—A case study of a high strength Ti-alloy using advanced experimental and modelling techniques [J]. Mater. Sci. Eng., 2014, A599: 166 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|