Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 789-800    DOI: 10.11900/0412.1961.2017.00564
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Progresses in Dendrite Coarsening During Solidification of Alloys
Mingfang ZHU1(), Like XING1, Hui FANG1, Qingyu ZHANG1, Qianyu TANG1, Shiyan PAN1,2
1 Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
2 School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Cite this article: 

Mingfang ZHU, Like XING, Hui FANG, Qingyu ZHANG, Qianyu TANG, Shiyan PAN. Progresses in Dendrite Coarsening During Solidification of Alloys. Acta Metall Sin, 2018, 54(5): 789-800.

Download:  HTML  PDF(4447KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dendrites are the most frequently observed solidification microstructures of metallic alloys. In most solidification processes at low and moderate cooling rates, dendrite coarsening in mushy zones has been recognized as an unavoidable phenomenon that significantly influences microstructures and thereby the properties of the final products. The behavior of dendrite coarsening has received persistent scientific interests owing to its importance in both academic value and practical application. During the last five decades, extensive efforts have been made through theoretical analyses, experimental techniques and numerical simulations for fundamentally understanding the mechanisms of dendrite coarsening during solidification under continuously cooling or isothermal conditions. This paper first gives a brief overview of the progress in the studies of dendrite coarsening. Then, a cellular automaton (CA) model recently proposed by the authors is presented, which involves the mechanisms of both solidification and melting. The model is applied to simulate the microstructural evolution of columnar dendrites of SCN-ACE alloys during isothermal holding in a mushy zone. The CA simulations reproduce the typical dendrite coarsening features as observed in experiments. The role of melting for dendrite coarsening is quantified by comparing the simulation results using the new CA model and a previous CA model that does not include the melting effect. The mechanisms of dendrite coarsening are investigated in detail by comparing the local equilibrium and actual liquid compositions at solid/liquid interfaces. The CA simulations render visualizing how local solidification and melting stimulate each other through the complicated interactions between phase transformation, interface shape variation and solute diffusion.

Key words:  alloy solidification      microstructure      dendrite coarsening      cellular automaton method     
Received:  02 January 2018     
ZTFLH:  TG113.12  
  TG111.4  
Fund: Supported by National Natural Science Foundation of China (Nos.51371051 and 51501091), Fundamental Research Funds for the Central Universities (No.2242016K40008), Innovation Project of Jiangsu Key Laboratory of Advanced Metallic Materials (No.BM2007204) and the Scientific Research Foundation of Graduate School of Southeast University (No.YBJJ1627)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00564     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/789

Fig.1  LSW size distribution function, G(R/R?), representing a probability density function for the renormalized sphere radius R/R? [6,7]
Fig.2  Schematic of four dendrite coarsening modes
Fig.3  Sequence of 2-D images of the Al-10%Cu (mass fraction) specimen showing the different coarsening mechanisms (The arrows in red and black colors indicate melting and solidification locations, respectively, tstart—starting time)[18,35,69]
(a) small dendrite arm melting and interdendritic groove advancement
(b) joining of the dendrite arm tips, leading to the formation of entrapped liquid
(c) dendrite arm fragmentation obtained by the isothermal in situ observation experiment with a transparent cyclohexanol-fluorescein alloy
Fig.5  Simulated dendrite coarsening for a SCN-2.0%ACE (succinonitrile-acetone, mass fraction) alloy during isothermal holding in a mushy zone of 320 K displayed in actual composition at tstart (a), tstart+180 s (b) and tstart +550 s (c)
Fig.6  Simulated evolution of dendrite coarsening at the locations of the boxes in Fig.5, showing small dendrite arm melting, interdendritic groove advancement and dendrite arm fragmentation (The numbers in Fig.6a show the local curvatures, while those in Fig.6b and c show the liquid compositions. The arrows and numbers in red color indicate melting locations, while those in black color indicate solidification locations. Cleq—the local equilibrium liquid composition at the solid/liquid interface, Cl—liquid composion, fs—solid fraction)
(a) solid fraction (b) equilibrium composition (c) actual composition
Fig.7  Simulated evolution of dendrite coarsening by joining of the dendrite arm tips, leading to the formation of entrapped liquid during isothermal holding in a mushy zone of 316 K for a SCN-2.0%ACE alloy (The numbers in Fig.7a show the local curvatures, while those in Fig.7b and c show the liquid compositions. The arrows and numbers in red color indicate melting locations, and those in black color indicate solidification locations)[69]
(a) solid fraction (b) equilibrium composition (c) actual composition
Fig.8  Evolution of specific surface area (SVs) during isothermal holding in a mushy zone of 316 K for a SCN-2.0%ACE alloy obtained from the CA models with and without melting[69]
[1] Marsh S P, Glicksman M E.Overview of geometric effects on coarsening of mushy zones[J]. Metall. Mater. Trans., 1996, 27A: 557
[2] Huang S C, Glicksman M E.Overview 12: Fundamentals of dendritic solidification-II development of sidebranch structure[J]. Acta Mater., 1981, 29: 717
[3] Rowenhorst D J, Voorhees P W.Measurement of interfacial evolution in three dimensions[J]. Annu. Rev. Mater. Res., 2012, 42: 105
[4] Flemings M C, Kattamis T Z, Bardes B P.Dendrite arm spacing in aluminum alloys[J]. Trans. Am. Foundry Soc., 1991, 89: 501
[5] Rettenmayr M.Melting and remelting phenomena[J]. Int. Mater. Rev., 2009, 54: 1
[6] Lifshitz I M, Slyozov V V.The kinetics of precipitation from supersaturated solid solutions[J]. J. Phys. Chem. Solids, 1961, 19: 35
[7] Wagner C.Theorie der alterung von niederschl?gen durch uml?sen (ostwald-reifung)[J]. Z. Elektrochem., 1961, 65: 581
[8] Ratke L, Voorhees P W.Growth and Coarsening: Ostwald Ripening in Material Processing[M]. Heidelberg: Springer-Verlag, 2002: 118
[9] Kirkwood D H.A simple model for dendrite arm coarsening during solidification[J]. Mater. Sci. Eng., 1985, 73: L1
[10] Mortensen A.On the influence of coarsening on microsegregation[J]. Metall. Trans., 1989, 20A: 247
[11] Mortensen A.On the rate of dendrite arm coarsening[J]. Metall. Trans., 1991, 22A: 569
[12] Chen M, Kattamis T Z.Dendrite coarsening during directional solidification of Al-Cu-Mn alloys[J]. Mater. Sci. Eng., 1998, A247: 239
[13] Kattamis T Z, Coughlin I C, Flemings M C.Influence of coarsening on dendrite arm spacing of aluminum-copper alloys[J]. Trans. Metall. Soc. AIME, 1967, 239: 1504
[14] Reeves J J, Kattamis T Z.A model for isothermal dendritic coarsening[J]. Scr. Metall., 1971, 5: 223
[15] Whisler N J, Kattamis T Z.Dendritic coarsening during solidification[J]. J. Cryst. Growth, 1972, 15: 20
[16] Peterson P W, Kattamis T Z, Giamei A F.Coarsening kinetics during solidification of Ni-Al-Ta dendritic monocrystals[J]. Metall. Trans., 1980, 11A: 1059
[17] Pilling J, Hellawell A.Mechanical deformation of dendrites by fluid flow[J]. Metall. Mater. Trans., 1996: 27A: 229
[18] Terzi S, Salvo L, Suery M, et al.Coarsening mechanisms in a dendritic Al-10% Cu alloy[J]. Acta Mater., 2010, 58: 20
[19] DeHoff R T. A geometrically general theory of diffusion controlled coarsening[J]. Acta Metall. Mater., 1991, 39: 2349
[20] Han Q Y, Hu H Q, Zhong X Y.The mathematical models for secondary dendrite arm isothermal coarsening[J]. Mater. Sci. Prog., 1987, 1(4): 33(韩青有, 胡汉起, 钟雪友. 二次枝晶臂等温粗化数学模型[J]. 材料科学进展, 1987, 1(4): 33)
[21] Kirkwood D H.Microsegregation[J]. Mater. Sci. Eng., 1984, 65: 101
[22] Dutta B, Rettenmayr M.Effect of cooling rate on the solidification behaviour of Al-Fe-Si alloys[J]. Mater. Sci. Eng., 2000, A283: 218
[23] Young K P, Kerkwood D H.The dendrite arm spacings of aluminum-copper alloys solidified under steady-state conditions[J]. Metall. Trans., 1975, 6A: 197
[24] Gu G D, An G Y.Secondary dendrite arm spacing and coarsening mechanism for Al-Cu-Ce alloys[J]. Foundry, 1990, (10): 32(顾根大, 安阁英. Al-Cu-Ce合金的二次枝晶间距和粗化机理[J]. 铸造, 1990, (10): 32)
[25] Poirier D R, Ganesan S, Andrews M, et al.Isothermal coarsening of dendritic equiaxial grains in Al-15.6wt.%Cu alloy[J]. Mater. Sci. Eng., 1991, A148: 289
[26] Alkemper J, Voorhees P W.Three-dimensional characterization of dendritic microstructures[J]. Acta Mater., 2001, 49: 897
[27] Mendoza R, Alkemper J, Voorhees P W.The morphological evolution of dendritic microstructures during coarsening[J]. Metall. Mater. Trans., 2003, 34A: 481
[28] Mendoza R, Savin I, Thornton K, et al.Topological complexity and the dynamics of coarsening[J]. Nat. Mater., 2004, 3: 385
[29] Kammer D, Voorhees P W.The morphological evolution of dendritic microstructures during coarsening[J]. Acta Mater., 2006, 54: 1549
[30] Mendoza R, Thornton K, Savin I, et al.The evolution of interfacial topology during coarsening[J]. Acta Mater., 2006, 54: 743
[31] Kwon Y, Thornton K, Voorhees P W.Coarsening of bicontinuous structures via nonconserved and conserved dynamics[J]. Phys. Rev., 2007, 75E: 021120
[32] Fife J L, Voorhees P W.Self-similar microstructural evolution of dendritic solid-liquid mixtures during coarsening[J]. Scr. Mater., 2009, 60: 839
[33] Fife J L, Voorhees P W.The morphological evolution of equiaxed dendritic microstructures during coarsening[J]. Acta Mater., 2009, 57: 2418
[34] Cool T, Voorhees P W.The evolution of dendrites during coarsening: Fragmentation and morphology[J]. Acta Mater., 2017, 127: 359
[35] Jackson K A, Hunt J D, Uhlmann D R, et al.On the origin of the equiaxed zone in castings[J]. Trans. Metall. Soc. AIME, 1966, 236: 149
[36] Li B, Brody H D, Kazimirov A.Real-time observation of dendrite coarsening in Sn-13%Bi alloy by synchrotron microradiography[J]. Phys. Rev., 2004, 70E: 062602
[37] Li B, Brody H D, Kazimirov A.Real time synchrotron microradiography of dendrite coarsening in Sn-13wt pct Bi alloy[J]. Metall. Mater. Trans., 2007, 38A: 599
[38] Limodin N, Salvo L, Suéry M, et al.In situ investigation by X-ray tomography of the overall and local microstructural changes occurring during partial remelting of an Al-15.8wt.% Cu alloy[J]. Acta Mater., 2007, 55: 3177
[39] Limodin N, Salvo L, Boller E, et al.In situ and real-time 3-D microtomography investigation of dendritic solidification in an Al-10 wt.% Cu alloy[J]. Acta Mater., 2009, 57: 2300
[40] Xu J J, Wang T M, Zhu J, et al.In situ study on secondary dendrite arm coarsening of Sn-Bi alloy by synchrotron microradiography[J]. Mater. Res. Innov., 2011, 15: 156
[41] Fife J L, Gibbs J W, Gulsoy E B, et al.The dynamics of interfaces during coarsening in solid-liquid systems[J]. Acta Mater., 2014, 70: 66
[42] Mirihanage W U, Falch K V, Snigireva I, et al.Retrieval of three-dimensional spatial information from fast in situ two-dimensional synchrotron radiography of solidification microstructure evolution[J]. Acta Mater., 2014, 81: 241
[43] Shuai S S, Guo E Y, Phillion A B, et al.Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of Mg-Sn alloys[J]. Acta Mater., 2016, 118: 260
[44] Guo E Y, Phillion A B, Cai B, et al.Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography[J]. Acta Mater., 2016, 123: 373
[45] Mathiesen R H, Arnberg L, Bleuet P, et al.Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-ray video microscopy[J]. Metall. Mater. Trans., 2006, 37A: 2515
[46] Galenko P K, Phanikumar G, Funke O, et al. Dendritic solidification and fragmentation in undercooled Ni-Zr alloys [J]. Mater. Sci. Eng., 2007, A449-451: 649
[47] Ruvalcaba D, Mathiesen R H, Eskin D G, et al.In situ observations of dendritic fragmentation due to local solute-enrichment during directional solidification of an aluminum alloy[J]. Acta Mater., 2007, 55: 4287
[48] Wang T M, Xu J J, Li J, et al.In situ study on dendrite growth of metallic alloy by a synchrotron radiation imaging technology[J]. Sci. China: Tech. Sci., 2010, 53: 1278
[49] Peng P, Li X Z, Li J G, et al.Detachment of secondary dendrite arm in a directionally solidified Sn-Ni peritectic alloy under deceleration growth condition[J]. Sci. Rep., 2016, 6: 27682
[50] Akamatsu S, Nguyen-Thi H.In situ observation of solidification patterns in diffusive conditions[J]. Acta Mater., 2016, 108: 325
[51] Li X, Gagnoud A, Fautrelle Y, et al.Dendrite fragmentation and columnar-to-equiaxed transition during directional solidification at lower growth speed under a strong magnetic field[J]. Acta Mater., 2012, 60: 3321
[52] Liotti E, Lui A, Vincent R, et al.A synchrotron X-ray radiography study of dendrite fragmentation induced by a pulsed electromagnetic field in an Al-15Cu alloy[J]. Acta Mater., 2014, 70: 228
[53] Bi C, Guo Z P, Liotti E, et al.Quantification study on dendrite fragmentation in solidification process of alluminum alloys[J]. Acta Metall. Sin., 2015, 51: 677(毕成, 郭志鹏, Liotti E等. 铝合金凝固过程枝晶破碎现象的定量化研究[J]. 金属学报, 2015, 51: 677)
[54] Liotti E, Lui A, Kumar S, et al.The spatial and temporal distribution of dendrite fragmentation in solidifying Al-Cu alloys under different conditions[J]. Acta Mater., 2016, 121: 384
[55] Ogilvy A J W, Kirkwood D H. A model for the numerical computation of microsegregation in alloys[J]. Appl. Scient. Res., 1987, 44: 43
[56] Neumann-Heyme H, Eckert K, Beckermann C.Dendrite fragmentation in alloy solidification due to sidearm pinch-off[J]. Phys. Rev., 2015, 92E: 060401
[57] Warren J A, Boettinger W J.Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method[J]. Acta Metall. Mater., 1995, 43: 689
[58] Wang J C, Yang G C.Phase-field modeling of isothermal dendritic coarsening in ternary alloys[J]. Acta Mater., 2008, 56: 4585
[59] Chen Y, Kang X H, Li D Z.Phase-field modeling of free dendritic growth with adaptive finite element method[J]. Acta Phys. Sin., 2009, 58: 390(陈云, 康秀红, 李殿中. 自由枝晶生长相场模型的自适应有限元法模拟[J]. 物理学报, 2009, 58: 390)
[60] Hu C Q, Zhang Y T, Li D H, et al.Simulation of dendrite growth and coarsening during isothermal solidification process by phase field method[J]. J. Shenyang Ligong Univ., 2010, 29(4): 51(胡春青, 张玉妥, 李东辉等. 等温凝固过程中枝晶生长与枝晶熟化的相场法模拟[J]. 沈阳理工大学学报, 2010, 29(4): 51)
[61] Aagesen L K, Fife J L, Lauridsen E M, et al.The evolution of interfacial morphology during coarsening: A comparison between 4D experiments and phase-field simulations[J]. Scr. Mater., 2011, 64: 394
[62] Zhang Y T, Zhang W N, Wang T, et al.Phase field modeling of dendritic coarsening during isothermal solidification[J]. China Foundry, 2011, 8: 313
[63] Xie Y, Dong H B, Dantzig J.Growth of secondary dendrite arms of Fe-C alloy during transient directional solidification by phase-field method[J]. ISIJ Int., 2014, 54: 430
[64] Kundin J, Rezende J L L, Emmerich H. Phase-field modeling of the coarsening in multi-component systems[J]. Metall. Mater. Trans., 2014, 45A: 1068
[65] Neumann-Heyme H, Eckert K, Beckermann C.Evolution of specific interface area in dendritic alloy solidification[J]. IOP Conf. Ser. Mater. Sci. Eng., 2015, 84: 012072
[66] Zheng Q W, Jing T, Dong H B.Modelling of secondary dendrite arms evolution during solidification by a phase-field method[J]. Mater. Today Proc., 2015, 2(suppl.2): S466
[67] Park C L, Voorhees P W, Thornton K.Evolution of interfacial curvatures of a bicontinuous structure generated via nonconserved dynamics[J]. Acta Mater., 2015, 90: 182
[68] Wesner E, Choudhury A, August A, et al.A phase-field study of large-scale dendrite fragmentation in Al-Cu[J]. J. Cryst. Growth, 2012, 359: 107
[69] Zhang Q Y, Fang H, Xue H, et al.Interaction of local solidification and remelting during dendrite coarsening-modeling and comparison with experiments[J]. Sci. Rep., 2017, 7: 17809
[70] Belteran-Sanchez L, Stefanescu D M.A quantitative dendrite growth model and analysis of stability concepts[J]. Metall. Mater. Trans., 2004, 35A: 2471
[71] Dong H B, Lee P D.Simulation of the columnar-to-equiaxed transition in directionally solidified Al-Cu alloys[J]. Acta Mater., 2005, 53: 659
[72] Zhu M F, Stefanescu D M.Virtual front tracking model for the quantitative modeling of dendritic growth in solidification of alloys[J]. Acta Mater., 2007, 55: 1741
[73] Pan S Y, Zhu M F.A three-dimensional sharp interface model for the quantitative simulation of solutal dendritic growth[J]. Acta Mater., 2010, 58: 340
[74] Yuan L, Lee P D.Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simulation[J]. Modell. Simul. Mater. Sci. Eng., 2010, 18: 055008
[75] Zhu M F, Zhang L, Zhao H L, et al.Modeling of microstructural evolution during divorced eutectic solidification of spheroidal graphite irons[J]. Acta Mater., 2015, 84: 413
[76] Chen R, Xu Q Y, Liu B C.Cellular automaton simulation of three-dimensional dendrite growth in Al-7Si-Mg ternary aluminum alloys[J]. Comput. Mater. Sci., 2015, 105: 90
[77] Zhang X F, Zhao J Z.Dendritic microstructure formation in a directionally solidified Al-11.6Cu-0.85Mg alloy[J]. J. Cryst. Growth, 2014, 391: 52
[78] Liu D R, Mangelinck-No?l N, Gandin C A, et al.Simulation of directional solidification of refined Al-7wt.%Si alloys-comparison with benchmark microgravity experiments[J]. Acta Mater., 2015, 93: 24
[79] Zhu M F, Tang Q Y, Zhang Q Y, et al.Cellular automaton modeling of micro-structure evolution during alloy solidification[J]. Acta Metall. Sin., 2016, 52: 1297(朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟[J]. 金属学报, 2016, 52: 1297)
[80] Guo Y G, Li S M, Liu L, et al.CA simulation of microstructure of directionally solidified DZ125 superalloy[J]. Acta Metall. Sin., 2008, 44: 365(郭勇冠, 李双明, 刘林等. DZ125高温合金定向凝固微观组织的CA法模拟[J]. 金属学报, 2008, 44: 365)
[81] Zhang L, Zhao H L, Zhu M F.Simulation of solidification microstructure of spheroidal graphite cast iron using a cellular automaton method[J]. Acta Metall. Sin., 2015, 51: 48(张蕾, 赵红蕾, 朱鸣芳. 球墨铸铁凝固显微组织的元胞自动机模拟[J]. 金属学报, 2015, 51: 148)
[82] Shan B W, Huang W D, Lin X, et al.Dendrite primary spacing selection simulation by the cellular automaton model[J]. Acta Metall. Sin., 2008, 44: 1042(单博炜, 黄卫东, 林鑫等. 元胞自动机模型模拟枝晶一次间距的选择[J]. 金属学报, 2008, 44: 1042)
[83] Chen R, Xu Q Y, Liu B C.Simulation of the dendrite morphology and microsegregation in solidification of Al-Cu-Mg aluminum alloys[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 173
[84] Zhang X F, Zhao J Z.Effect of forced flow on three dimensional dendritic growth of Al-Cu alloys[J]. Acta Metall. Sin., 2012, 48: 615(张显飞, 赵九洲. 来流对Al-Cu合金三维树枝晶生长的影响[J]. 金属学报, 2012, 48: 615)
[85] Wu M W, Xiong S M.A three-dimensional cellular automaton model for simulation of dendritic growth of magnesium alloy[J]. Acta Metall. Sin.(Engl. Lett.), 2012, 25: 169
[86] Chen S J, Guillemot G, Gandin C A.Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes[J]. Acta Mater., 2016, 115: 448
[87] Zinoviev A, Zinovieva O, Ploshikhin V, et al.Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method[J]. Mater. Des., 2016, 106: 321
[88] Pan S Y, Zhang Q Y, Zhu M F, et al.Liquid droplet migration under static and dynamic conditions: Analytical model, phase-field simulation and experiment[J]. Acta Mater., 2015, 86: 229
[89] Trivedi R, Kurz W.Dendritic growth[J]. Int. Mater. Rev., 1994, 39: 49
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!