Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (4): 603-612    DOI: 10.11900/0412.1961.2017.00252
Orginal Article Current Issue | Archive | Adv Search |
A First-Principles Study on Basal/Prismatic Reorientation-Induced Twinning Path and Alloying Effect in Hexagonal Metals
Gang ZHOU1,2, Lihua YE1, Hao WANG1(), Dongsheng XU1, Changgong MENG2, Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Cite this article: 

Gang ZHOU, Lihua YE, Hao WANG, Dongsheng XU, Changgong MENG, Rui YANG. A First-Principles Study on Basal/Prismatic Reorientation-Induced Twinning Path and Alloying Effect in Hexagonal Metals. Acta Metall Sin, 2018, 54(4): 603-612.

Download:  HTML  PDF(8534KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In hexagonal metals and alloys, deformation twinning plays an important role, because it is closely relevant to the mechanical behaviors. Recent studies have proposed a new twinning mode via direct lattice reorientation, which results in the basal/prismatic boundary, however, some important details remain unanswered, e.g., the twinning path and alloying effect. In this work, first principles calculations were employed to systematically study the reorientation process from basal to prismatic orientation in hexagonal metals and corresponding alloying effect. The result indicates that different activation energies are required to reorient in various hexagonal metals, and among them, the energy in Mg is the lowest and Os is the highest. Shear and shuffle components compose the reorientation process, where the shuffle component always contributes a significant part of the activation energy in Mg, whereas in Ti with sufficient shear strain, subsequent transition becomes energy-downhill. The pure shear was effected by alloying elements in Mg alloys, but pure shuffle in Ti alloys. Under certain shear or shuffle, subsequent activation energy has a complex dependence on alloying elements.

Key words:  hexagonal metal      twinning      first principles calculation      alloying     
Received:  27 June 2017     
ZTFLH:  TG146.2  
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0701304) and National Natural Science Foundation of China (No.51671195)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00252     OR     https://www.ams.org.cn/EN/Y2018/V54/I4/603

Fig.1  Schematics of the initial (a) and final (b) atomic configurations during the basal/prismatic transition
Fig.2  Energy barriers of 19 hexagonal metals during the basal/prismatic transition
Metal Cal. Exp.[21]
Be 1.568 1.574
Mg 1.624 1.623
Sc 1.592 1.555
Ti 1.587 1.584
Y 1.571 1.552
Zr 1.593 1.597
Tc 1.605 1.599
Gd 1.591 1.575
Tb 1.580 1.564
Dy 1.573 1.556
Ho 1.570 1.552
Er 1.569 1.550
Tm 1.570 1.551
Lu 1.583 1.555
Hf 1.581 1.581
Co 1.623 1.615
Ru 1.583 1.576
Re 1.615 1.615
Os 1.606 1.578
Table 1  Calculated and experimental[21] c/a ratios for hexagonal metals
Metal ZPVE Metal ZPVE
meVatom-1 meVatom-1
Be -1.66 Ho 0.14
Mg 0.20 Er 0.17
Sc 0.45 Tm -0.04
Ti -1.21 Lu 0.38
Y 0.02 Hf 0.44
Zr 0.23 Co 0.34
Tc 0.18 Ru 1.44
Gd 1.68 Re -1.61
Tb 1.03 Os 0.96
Dy 0.34
Table 2  Zero-point vibration energy (ZPVE) correction
Fig.3  Relationships of energy barrier and c/a ratio during the basal/prismatic transition in 16 hexagonal metals
Fig.4  Schematics of the shear and shuffle (εy'z'—equivalent shear strain during basal/prismatic transition)(a) the initial and final four-atom supercell shape(b) the four-atom supercell viewed from [12?10]
Fig.5  Reorientation energy maps against the shear and shuffle components in Mg (a) and Ti (b) (The red curves indicate the minimum energy paths of the basal/prismatic transition processes)
Fig.6  Histogram of ΔE in Mg (a) and Ti (b) (ΔE is the shuffle energy at different amount of shear, and the black squares represent the value less than 0)
Fig.7  Reorientation energy maps against the shear and shuffle components in Mg alloyed by Be (a), Al (b), Si (c), La (d), Zr (e) and Mn (f) (The red circles indicate the amount of pure shear given an activation energy of 14 meV/atom)
Fig.8  Reorientation energy maps against the shear and shuffle components Ti alloyed by Al (a), Hf (b), Zr (c), W (d), Cr (e), Nb (f), V (g), Co (h), La (i), Fe (j), Re (k), Os (l), Ru (m) (The red circles indicate the amount of pure shear or pure shuffle given an activation energy of 30 meV/atom)
Fig.9  3D charge density difference maps of initial and 50% basal/prismatic transitional structures with isosurface values of 13 e/nm3 (a~d) and 47 e/nm3 (e~h) in pure Mg (a, b), Mg-La (c, d), pure Ti (e, f) and Ti-La (g, h) (The red circles indicate charge enrichment)
[1] Biget M P, Saada G.Low-temperature plasticity of high purity α-titanium single crystals[J]. Philos. Mag., 1989, 59A: 747
[2] Ostapovets A, Molnár P, Gr?eger R. On basal-prismatic twinning interfaces in magnesium [J]. 6th International Conference on Nanomaterials by Severe Plastic Deformation [C]. Bristol: IOP Publishing, 2014: 012134
[3] Zhang X Y, Lou C, Tu J, et al.Plasticity induced by twin lamellar structure in magnesium alloy[J]. J. Mater. Sci. Technol., 2013, 29: 1123
[4] Lou C, Zhang X Y, Wang R H, et al.Effects of untwinning and {1012} twin lamellar structure on the mechanical properties of Mg alloy[J]. Acta Metall. Sin., 2013, 49: 291(娄超, 张喜燕, 汪润红等. 退孪生行为以及{1012}孪晶片层结构对镁合金力学性能的影响[J]. 金属学报, 2013, 49: 291)
[5] Wang Y N, Huang J C.Texture analysis in hexagonal materials[J]. Mater. Chem. Phys., 2003, 81: 11
[6] Yoo M H, Wei C T.Slip modes of hexagonal-close-packed metals[J]. J. Appl. Phys., 1967, 38: 4317
[7] Shan Z W, Liu B Y.The mechanism of {1012} deformation twinning in magnesium[J]. Acta Metall. Sin., 2016, 52: 1267(单智伟, 刘博宇. Mg的{1012}形变孪晶机制[J]. 金属学报, 2016, 52: 1267)
[8] Liu B Y, Wang J, Li B, et al.Twinning-like lattice reorientation without a crystallographic twinning plane[J]. Nat. Commun., 2014, 5: 3297
[9] Zong H X, Ding X D, Lookman T, et al.Collective nature of plasticity in mediating phase transformation under shock compression[J]. Phys. Rev., 2014, 89B: 220101
[10] Kumar A, Wang J, Tomé C N.First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals[J]. Acta Mater., 2015, 85: 144
[11] Ishii A, Li J, Ogata S.Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation[J]. Int. J. Plast., 2016, 82: 32
[12] Zhang X Y, Li B, Tu J, et al.Non-classical twinning behavior in dynamically deformed cobalt[J]. Mater. Res. Lett., 2015, 3: 142
[13] Li B, Zhang X Y.Twinning with zero twinning shear[J]. Scr. Mater., 2016, 125: 73
[14] Wu W, Gao Y F, Li N, et al.Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys[J]. Acta Mater., 2016, 121: 15
[15] Kresse G, Hafner J.Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium[J]. Phys. Rev., 1994, 49B: 14251
[16] Kresse G, Furthmüller J.Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169
[17] Bl?chl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[18] Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[19] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[20] Sheppard D, Xiao P H, Chemelewski W, et al.A generalized solid-state nudged elastic band method[J]. J. Chem. Phys., 2012, 136: 074103
[21] Martienssen W, Warlimont H.Springer Handbook of Condensed Matter and Materials Data[M]. Berlin: Springer, 2005: 54
[22] Park J S, Chang Y W. The effect of alloying elements on the c/a ratio of magnesium binary alloys [J]. Adv. Mater. Res., 2007, 26-28: 95
[23] Kim H L, Park J S, Chang Y W.Effects of lattice parameter changes on critical resolved shear stress and mechanical properties of magnesium binary single crystals[J]. Mater. Sci. Eng., 2012, A540: 198
[24] Minárik P, Král R, ?i?ek J, et al.Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP[J]. Acta Mater., 2016, 107: 83
[25] Zheng-Johansson J X, Eriksson O, Johansson B. Systematic behavior of the hexagonal axial ratio for the d transition metals[J]. Phys. Rev., 1999, 59B: 6131
[26] Nan X L, Wang H Y, Zhang L, et al.Calculation of schmid factors in magnesium: Analysis of deformation behaviors[J]. Scr. Mater., 2012, 67: 443
[27] Kwasniak P, Muzyk M, Garbacz H, et al.Influence of oxygen content on the mechanical properties of hexagonal Ti-first principles calculations[J]. Mater. Sci. Eng., 2014, A590: 74
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[3] WANG Hanyu, LI Cai, ZHAO Can, ZENG Tao, WANG Zumin, HUANG Yuan. Direct Alloying of Immiscible Tungsten and Copper Based on Nano Active Structure and Its Thermodynamic Mechanism[J]. 金属学报, 2023, 59(5): 679-692.
[4] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[5] CHEN Jilin, FENG Guanghong, MA Honglei, YANG Dong, LIU Wei. Microstructure, Mechanical Properties, and Strengthening Mechanism of Cr-Mo Microalloy Cold Heading Steel[J]. 金属学报, 2022, 58(9): 1189-1198.
[6] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[7] LIU Guang, CHEN Peng, YAO Xiyu, CHEN Pu, LIU Xingchen, LIU Chaoyang, YAN Ming. Properties of CrMoTi Medimum-Entropy Alloy and Its In Situ Alloying Additive Manufacturing[J]. 金属学报, 2022, 58(8): 1055-1064.
[8] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[9] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[10] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[11] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[12] GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy[J]. 金属学报, 2021, 57(2): 129-149.
[13] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[14] ZHENG Qiuju, YE Zhongfei, JIANG Hongxiang, LU Ming, ZHANG Lili, ZHAO Jiuzhou. Effect of Micro-Alloying Element La on Solidification Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys[J]. 金属学报, 2021, 57(1): 103-110.
[15] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
No Suggested Reading articles found!