Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (6): 801-820    DOI: 10.11900/0412.1961.2019.00451
Current Issue | Archive | Adv Search |
Progress in Research on the Alloying of Binary Immiscible Metals
HUANG Yuan(), DU Jinlong, WANG Zumin
School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
Download:  HTML  PDF(3903KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Materials based on binary immiscible metal systems are widely used in aerospace, nuclear fusion engineering, electronic packaging, anti-armor weapons and other fields. However, due to the positive formation heat and the large differences in the properties of the component, the direct alloying of binary immiscible metals and the preparation of the corresponding materials are very difficult. Varieties of methods have been developed for direct alloying of binary immiscible metals at home and abroad, and the thermodynamic and diffusion mechanism of these methods have been studied. In this review, firstly the principle and thermodynamic mechanism of mechanical alloying, physical vapor deposition and ion beam mixing, as well as their applications in binary immiscible metal powder alloys and nano-multilayer films are reviewed. Then the irradiation damage alloying (IDA) and high-temperature structure induced alloying (HTSIA) methods that are proposed and developed by our group are introduced. Besides, the principle, interfacial microstructure, thermodynamic mechanism, diffusion mechanism and application of these two methods were described in detail. Finally, the development trend of the research on alloying of binary immiscible metals is proposed.

Key words:  binary immiscible metallic alloy      direct alloying      thermodynamic mechanism      microstructure      mechanical property     
Received:  17 December 2019     
ZTFLH:  TG131  
Fund: National Key Research and Development Program of China(2018YFB0703904);National Key Research and Development Program of China(2017YFE0302600);National Natural Science Foundation of China(51471114);National Natural Science Foundation of China(51171128)
Corresponding Authors:  HUANG Yuan     E-mail:  yi_huangyuan@tju.edu.cn

Cite this article: 

HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals. Acta Metall Sin, 2020, 56(6): 801-820.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00451     OR     https://www.ams.org.cn/EN/Y2020/V56/I6/801

Fig.1  Schematic illustrations of severe plastic defor-mation process
(a) high pressure torsion (P—pressure)
(b) equal channel angular extrusion (R—outer angular radius, Φ—inner corner angle, ψ—outer corner angle)
(c) accumulative roll bonding
Fig.2  Schematic diagram of physical vapor deposition
(a) vacuum evaporation (b) sputtering
Fig.3  Schematic diagram of ion beam mixing
Fig.4  Preparation process of the immiscible W/Ag, Mo/Ag and Mo/Cu laminated metal composites (LMCs) by irradiation damage alloying (IDA)[100]
Color online
Fig.5  EDX line-scanning results of the cross-section of the W/Ag LMCs[100]
Color online
(a) drift corrected spectrum profile (b) EDX line-scanning profile along the red-line in Fig.5a
Fig.7  EDX line-scanning results of the cross-section of the Mo/Cu LMCs[100,102]
Color online
(a) drift corrected spectrum profile (b) EDX line-scanning profile along the red-line in Fig.7a
Fig.8  Microscopic characterization for the interface of the W/Ag LMCs[100]
(a) HRTEM image (b) corresponding SAED pattern
Fig.9  Microscopic characterization for the interface of the Mo/Ag LMCs[100,101]
(a) HRTEM image (b) corresponding SAED pattern
Fig.10  Microscopic characterization for the interface of the Mo/Cu LMCs[100]
(a) HRTEM image (b) corresponding SAED pattern
Fig.11  Variable energy positron annihilation spectroscopy (VEPAS) results of various samples[101] (S is the line shape parameter of Doppler broadening data, SB is the parameter that is normalized to the defect-free S value)(a) S parameter vs positron implantation energy for the pre-annealed pure Mo and the Ag+ implanted Mo
(b) S parameter vs positron implantation energy for the pre-annealed pure Mo and the Mo/Ag laminated samples with a 100 nm thick Ag layer annealed at different temperatures
Annealing temperature / ℃S parameter value of S peakDepth / nm
3000.4635155
4000.4657119
5000.4622119
6000.4604108
7000.450178
Table 1  S parameter values and corresponding depth of the S peak for the Mo/Ag laminated samples annealed at different temperatures[101]
Fig.6  EDX line-scanning results of the cross-section of the Mo/Ag LMCs[100,101]
Color online
(a) drift corrected spectrum profile (b) EDX line-scanning profile along the red-line in Fig.6a
Fig.12  Cross-section TEM image for the Mo/Ag laminated sample annealed at 800 ℃ for 4 h (a) and the magnified image of the region marked with a white rectangular frame in Fig.12a (b)[101]
Fig.13  Schematic view of the forming process of the Kirkendall voids in the Mo/Ag laminated sample[101] (IIPDs—irradiation-induced point defects )
Color online
Fig.14  Preparation process of the Nb/Cu joint by high-temperature structure induced alloying (HTSIA)[107] (F—force)
Fig.15  HRTEM observation of the W/Cu interface of W/Cu joint prepared through the direct diffusion bonding[109]
Color online
(a) EDX line-scanning compositional profile
(b) HRTEM image at W/Cu interface
(c) filtered image of the region marked with blue rectangle in Fig.15b
Fig.16  HRTEM images of microstructures of theW50Cu50 sintered powder metallurgy materials prepared by milling for 30 h (a) and 40 h (c) and subsequent sintering at 980 ℃ for 3 h, and the corresponding SAED patterns of Figs.16a and c (b, d)[109] (Insets in Figs.16a and c show the EDX results of W50Cu50 sintered powders)
Fig.17  DSC curves of the original and annealed W and Cu rods[109]
Fig.18  DSC curves of the 40 h milled W50Cu50 powder mixture before and after being annealed[109]
Fig.19  Calculated curves of Gibbs free energy change for the alloying in W-Cu system[109](Einitial—total initial energy of W-Cu system, ΔGalloying—Gibbs energy for the alloying between W and Cu, ΔGalloyingc—Gibbs energy for the formation of W/Cu crystalline phases, ΔGalloyinga—Gibbs energy for the formation of W/Cu amorphous phases)
[1] Ma E. Alloys created between immiscible elements [J]. Prog. Mater. Sci., 2005, 50: 413
doi: 10.1016/j.pmatsci.2004.07.001
[2] Lu G H, Zhou H B, Becquart C S. A review of modelling and simulation of hydrogen behaviour in tungsten at different scales [J]. Nucl. Fusion, 2014, 54: 086001
doi: 10.1088/0029-5515/54/8/086001
[3] Philipps V. Tungsten as material for plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2011, 415: S2
[4] Chen W G, Dong L L, Zhang H, et al. Microstructure characterization of W-Cu alloy sheets produced by high temperature and high pressure deformation technique [J]. Mater. Lett., 2017, 205: 198
doi: 10.1016/j.matlet.2017.06.090
[5] Wang F T, Wu Y C, Wang T G, et al. Fabrication and properties of the W-Cu gradient heat sink materials for plasma facing materials [J]. Acta Mater. Comp. Sin., 2008, 25(2): 25
汪峰涛, 吴玉程, 王涂根等. W-Cu面对等离子体梯度热沉材料的制备和性能 [J]. 复合材料学报, 2008, 25(2): 25
[6] Shikov A, Pantsyrnyi V, Vorobieva A, et al. High strength, high conductivity Cu-Nb based conductors with nanoscaled microstructure [J]. Physica, 2001, 354C: 410
[7] Yano S, Matsui H, Morozumi S. Structural observations of the interface of explosion-bonded Mo/Cu system [J]. J. Mater. Sci., 1998, 33: 4857
doi: 10.1023/A:1004438515248
[8] Yoshida N. Review of recent works in development and evaluation of high-Z plasma facing materials [J]. J. Nucl. Mater., 1999, 266-269: 197
doi: 10.1016/S0022-3115(98)00817-4
[9] Taghavi Pourian Azar G, Rezaie H R, Gohari B, et al. Synthesis and densification of W-Cu, W-Cu-Ag and W-Ag composite powders via a chemical precipitation method [J]. J. Alloys Compd., 2013, 574: 432
doi: 10.1016/j.jallcom.2013.04.172
[10] Huang Y, Kong D Y, He F, et al. Preparation of Mo/Ag laminar composites by using irradiation damage alloying method [J]. Acta Metall. Sin., 2012, 48: 1253
doi: 10.3724/SP.J.1037.2011.00811
黄 远, 孔德月, 何 芳等. 辐照损伤合金化制备Mo/Ag层状复合材料 [J]. 金属学报, 2012, 48: 1253
doi: 10.3724/SP.J.1037.2011.00811
[11] Findik F, Uzun H. Microstructure, hardness and electrical properties of silver-based refractory contact materials [J]. Mater. Des., 2003, 24: 489
doi: 10.1016/S0261-3069(03)00125-0
[12] Wu F, Bellon P, Melmed A J, et al. Forced mixing and nanoscale decomposition in ball-milled Cu-Ag characterized by APFIM [J]. Acta Mater., 2001, 49: 453
doi: 10.1016/S1359-6454(00)00329-3
[13] Xi S Q, Zuo K S, Li X G, et al. Study on the solid solubility extension of Mo in Cu by mechanical alloying Cu with amorphous Cr(Mo) [J]. Acta Mater., 2008, 56: 6050
doi: 10.1016/j.actamat.2008.08.013
[14] Al-Aqeeli N, Hussein M A, Suryanarayana C. Phase evolution during high energy ball milling of immiscible Nb-Zr alloys [J]. Adv. Powder Technol., 2015, 26: 385
doi: 10.1016/j.apt.2014.11.008
[15] Martínez C, Ordoñez S, Serafini D, et al. Study of the formation and thermal stability of Mg2Co obtained by mechanical alloying and heat treatment [J]. J. Alloys Compd., 2014, 590: 469
doi: 10.1016/j.jallcom.2013.12.123
[16] Musu E, Mura G, Ligios G, et al. Formation of metastable solid solutions by mechanical alloying of immiscible Ag and Bi [J]. J. Alloys Compd., 2013, 576: 80
doi: 10.1016/j.jallcom.2013.04.124
[17] Suryanarayana C. Mechanical alloying and milling [J]. Prog. Mater. Sci., 2001, 46: 1
doi: 10.1016/S0079-6425(99)00010-9
[18] Selvakumar N, Vettivel S C. Thermal, electrical and wear behavior of sintered Cu-W nanocomposite [J]. Mater. Des., 2013, 46: 16
doi: 10.1016/j.matdes.2012.09.055
[19] Darling K A, Roberts A J, Mishin Y, et al. Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum [J]. J. Alloys Compd., 2013, 573: 142
doi: 10.1016/j.jallcom.2013.03.177
[20] Rajagopalan M, Darling K, Turnage S, et al. Microstructural evolution in a nanocrystalline Cu-Ta alloy: A combined in-situ TEM and atomistic study [J]. Mater. Des., 2017, 113: 178
doi: 10.1016/j.matdes.2016.10.020
[21] Ren F Z, Zhu W W, Chu K J, et al. Tribological and corrosion behaviors of bulk Cu-W nanocomposites fabricated by mechanical alloying and warm pressing [J]. J. Alloys Compd., 2016, 676: 164
doi: 10.1016/j.jallcom.2016.03.141
[22] López J M, Alonso J A, Gallego L J. Determination of the glass-forming concentration range in binary alloys from a semiempirical theory: Application to Zr-based alloys [J]. Phys. Rev., 1987, 36B: 3716
[23] Zuo K S, Xi S Q, Zhou J E. Effect of temperature on mechanical alloying of Cu-Zn and Cu-Cr system [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 1206
doi: 10.1016/S1003-6326(08)60430-6
[24] Ran G, Zhou J E, Xi S Q, et al. Study on phase transformation and thermodynamic and kinetic of Al-Pb powder during mechanical alloying [J]. Heat Treat. Met., 2004, 29(7): 49
冉 广, 周敬恩, 席生岐等. 机械合金化过程中Al-Pb相变的热力学和动力学研究 [J]. 金属热处理, 2004, 29(7): 49
[25] Sheibani S, Heshmati-Manesh S, Ataie A. Structural investigation on nano-crystalline Cu-Cr supersaturated solid solution prepared by mechanical alloying [J]. J. Alloys Compd., 2010, 495: 59
doi: 10.1016/j.jallcom.2010.02.034
[26] Wu Z F, Zhou F, Cheng Z. Mechanical alloying of Ag-Cu nanocrystalline supersaturated solid solution [J]. Powder Metall. Ind., 2015, 25(5): 13
吴志方, 周 帆, 程 钊. 机械合金化制备Ag-Cu纳米晶过饱和固溶体 [J]. 粉末冶金工业, 2015, 25(5): 13
[27] Wu Z F, Zhou F. Mechanical alloying of Co-Cu nano-crystalline supersaturated solid solution [J]. China Powder Sci. Technol., 2015, 21(2): 64
吴志方, 周 帆. 机械合金化制备Co-Cu纳米晶过饱和固溶体 [J]. 中国粉体技术, 2015, 21(2): 64
[28] Ma E, Sheng H W, He J H, et al. Solid-state alloying in nanostructured binary systems with positive heat of mixing [J]. Mater. Sci. Eng., 2000, A286: 48
[29] Eckert J, Holzer J C, Krill III C E, et al. Mechanically driven alloying and grain size changes in nanocrystalline Fe-Cu powders [J]. J. Appl. Phys., 1993, 73: 2794
doi: 10.1063/1.353055
[30] Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
doi: 10.1016/j.pmatsci.2008.03.002
[31] Toth L S, Gu C F. Ultrafine-grain metals by severe plastic deformation [J]. Mater. Charact., 2014, 92: 1
doi: 10.1016/j.matchar.2014.02.003
[32] Zhilyaev A P, Nurislamova G V, Kim B K, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion [J]. Acta Mater., 2003, 51: 753
doi: 10.1016/S1359-6454(02)00466-4
[33] Valiev R. Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nat. Mater., 2004, 3: 511
doi: 10.1038/nmat1180
[34] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulk materials—Development of the accumulative roll-bonding (ARB) process [J]. Acta Mater., 1999, 47: 579
doi: 10.1016/S1359-6454(98)00365-6
[35] Saito Y, Tsuji N, Utsunomiya H, et al. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process [J]. Scr. Mater., 1998, 39: 1221
doi: 10.1016/S1359-6462(98)00302-9
[36] Berbon P B, Furukawa M, Horita Z, et al. Influence of pressing speed on microstructural development in equal-channel angular pressing [J]. Metall. Mater. Trans., 1999, 30A: 1989
[37] Straumal B B, Protasova S G, Mazilkin A A, et al. SPD-induced changes of structure and magnetic properties in the Cu-Co alloys [J]. Mater. Lett., 2013, 98: 217
doi: 10.1016/j.matlet.2013.02.058
[38] Gente C, Oehring M, Bormann R. Formation of thermodynamically unstable solid solutions in the Cu-Co system by mechanical alloying [J]. Phys. Rev., 1993, 48B: 13244
[39] Wilde G, Rösner H. Stability aspects of bulk nanostructured metals and composites [J]. J. Mater. Sci., 2007, 42: 1772
doi: 10.1007/s10853-006-0986-7
[40] Sauvage X, Jessner P, Vurpillot F, et al. Nanostructure and properties of a Cu-Cr composite processed by severe plastic deformation [J]. Scr. Mater., 2008, 58: 1125
doi: 10.1016/j.scriptamat.2008.02.010
[41] Zhang Z L, Guo J M, Dehm G, et al. In-situ tracking the structural and chemical evolution of nanostructured CuCr alloys [J]. Acta Mater., 2017, 138: 42
doi: 10.1016/j.actamat.2017.07.039
[42] Ekiz E H, Lach T G, Averback R S, et al. Microstructural evolution of nanolayered Cu-Nb composites subjected to high-pressure torsion [J]. Acta Mater., 2014, 72: 178
doi: 10.1016/j.actamat.2014.03.040
[43] Wang M, Averback R S, Bellon P, et al. Chemical mixing and self-organization of Nb precipitates in Cu during severe plastic deformation [J]. Acta Mater., 2014, 62: 276
doi: 10.1016/j.actamat.2013.10.009
[44] Edwards D, Sabirov I, Sigle W, et al. Microstructure and thermostability of a W-Cu nanocomposite produced via high-pressure torsion [J]. Philos. Mag., 2012, 92: 4151
doi: 10.1080/14786435.2012.704426
[45] Pouryazdan M, Schwen D, Wang D, et al. Forced chemical mixing of immiscible Ag-Cu heterointerfaces using high-pressure torsion [J]. Phys. Rev., 2012, 86B: 144302
[46] Bachmaier A, Kerber M, Setman D, et al. The formation of supersaturated solid solutions in Fe-Cu alloys deformed by high-pressure torsion [J]. Acta Mater., 2012, 60: 860
doi: 10.1016/j.actamat.2011.10.044
[47] Quelennec X, Menand A, Le Breton J M, et al. Homogeneous Cu-Fe supersaturated solid solutions prepared by severe plastic deformation [J]. Philos. Mag., 2010, 90: 1179
doi: 10.1080/14786430903313682
[48] Miyazaki T, Terada D, Miyajima Y, et al. Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion [J]. J. Mater. Sci., 2011, 46: 4296
doi: 10.1007/s10853-010-5240-7
[49] Zghal S, Bhattacharya P, Twesten R, et al. Structural and chemical characterization of Cu-Ag and Ni-Ag nanocomposites synthesized by high-energy ball milling [J]. J. Met. Nanocryst. Mater., 2002, 13: 165
[50] Yavari A R, Desré P J, Benameur T. Mechanically driven alloying of immiscible elements [J]. Phys. Rev. Lett., 1992, 68: 2235
doi: 10.1103/PhysRevLett.68.2235
[51] Martin G. Phase stability under irradiation: Ballistic effects [J]. Phys. Rev., 1984, 30B: 1424
[52] Ashkenazy Y, Pant N, Zhou J, et al. Phase evolution of highly immiscible alloys under shear deformation: Kinetic pathways, steady states, and the lever-rule [J]. Acta Mater., 2017, 139: 205
doi: 10.1016/j.actamat.2017.08.014
[53] Valiev R Z, Krasilnikov N A, Tsenev N K. Plastic deformation of alloys with submicron-grained structure [J]. Mater. Sci. Eng., 1991, A137: 35
[54] Ferrasse S, Segal V M, Alford F, et al. Scale up and application of equal-channel angular extrusion for the electronics and aerospace industries [J]. Mater. Sci. Eng., 2008, A493: 130
[55] Nakashima K, Horita Z, Nemoto M, et al. Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing [J]. Acta Mater., 1998, 46: 1589
doi: 10.1016/S1359-6454(97)00355-8
[56] Beyerlein I J, Mara N A, Carpenter J S, et al. Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation [J]. J. Mater. Res., 2013, 28: 1799
doi: 10.1557/jmr.2013.21
[57] Wang Y, Zhu X Y, Liu G M, et al. Strain rate sensitivity of Cu/Ni and Cu/Nb nanoscale multilayers [J]. Acta Metall. Sin., 2017, 53: 183
doi: 10.11900/0412.1961.2016.00358
王 尧, 朱晓莹, 刘贵民等. Cu/Ni和Cu/Nb纳米多层膜的应变率敏感性 [J]. 金属学报, 2017, 53: 183
doi: 10.11900/0412.1961.2016.00358
[58] Zhang X, Zhang J Y, Niu J J, et al. Ductility and fracture behavior of Cu/Nb nanostructured multilayers [J]. Chin. J. Nonferrous Met., 2011, 21: 1404
张 欣, 张金钰, 牛佳佳等. Cu/Nb纳米多层膜延性及其断裂行为 [J]. 中国有色金属学报, 2011, 21: 1404
[59] Zhang J Y, Zhang P, Zhang X, et al. Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers [J]. Mater. Sci. Eng., 2012, A545: 118
[60] Elofsson V, Almyras G A, Lü B, et al. Atomic arrangement in immiscible Ag-Cu alloys synthesized far-from-equilibrium [J]. Acta Mater., 2016, 110: 114
doi: 10.1016/j.actamat.2016.03.023
[61] Hu M, Gao X M, Weng L J, et al. The microstructure and improved mechanical properties of Ag/Cu nanoscaled multilayer films deposited by magnetron sputtering [J]. Appl. Surf. Sci., 2014, 313: 563
doi: 10.1016/j.apsusc.2014.06.023
[62] Zhang X, Hundley M F, Malinowski A, et al. Microstructure and electronic properties of Cu/Mo multilayers and three-dimensional arrays of nanocrystalline Cu precipitates embedded in a Mo matrix [J]. J. Appl. Phys., 2004, 95: 3644
doi: 10.1063/1.1649795
[63] Guo Z Z, Sun Y, Duan Y H, et al. Structure and properties of Cu/Mo nanostructure multilayer deposited by magnetron sputtering [J]. Chin. J. Rare Met., 2012, 36: 92
郭中正, 孙 勇, 段永华等. 磁控溅射Cu/Mo纳米多层膜的结构与性能 [J]. 稀有金属, 2012, 36: 92
[64] Fenn M, Petford-Long A K, Donovan P E. Electrical resistivity of Cu and Nb thin films and multilayers [J]. J. Magn. Magn. Mater., 1999, 198-199: 231
doi: 10.1016/S0304-8853(98)01062-2
[65] Lima A L, Zhang X, Misra A, et al. Length scale effects on the electronic transport properties of nanometric Cu/Nb multilayers [J]. Thin Solid Films, 2007, 515: 3574
doi: 10.1016/j.tsf.2006.11.004
[66] Monclús M A, Karlik M, Callisti M, et al. Microstructure and mechanical properties of physical vapor deposited Cu/W nanoscale multilayers: Influence of layer thickness and temperature [J]. Thin Solid Films, 2014, 571: 275
doi: 10.1016/j.tsf.2014.05.044
[67] Wen S P, Zong R L, Zeng F, et al. Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers [J]. Acta Mater., 2007, 55: 345
doi: 10.1016/j.actamat.2006.07.043
[68] Guo Z Z, Sun Y, Duan Y H, et al. Structures and properties of Cu/W nanostructured multilayers deposited by sputtering [J]. Rare Met. Mater. Eng., 2014, 43: 906
郭中正, 孙 勇, 段永华等. 溅射沉积Cu/W纳米多层膜结构与性能 [J]. 稀有金属材料与工程, 2014, 43: 906
[69] Lai W S, Yang M J. Observation of largely enhanced hardness in nanomultilayers of the Ag-Nb system with positive enthalpy of formation [J]. Appl. Phys. Lett., 2007, 90: 181917
doi: 10.1063/1.2735670
[70] Meyers M A, Mishra A, Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci., 2006, 51: 427
doi: 10.1016/j.pmatsci.2005.08.003
[71] Misra A, Krug H. Deformation behavior of nanostructured metallic multilayers [J]. Adv. Eng. Mater., 2001, 3: 217
doi: 10.1002/(ISSN)1527-2648
[72] Lehoczky S L. Strength enhancement in thin-layered Al-Cu laminates [J]. J. Appl. Phys., 1978, 49: 5479
doi: 10.1063/1.324518
[73] Zhang J Y, Wang Y Q, Wu K, et al. Strain rate sensitivity of nanolayered Cu/X (X=Cr, Zr) micropillars: Effects of heterophase interface/twin boundary [J]. Mater. Sci. Eng., 2014, A612: 28
[74] Zhu X Y, Pan F. Progress in research on the mechanical properties of nanoscale metallic multilayers [J]. Mater. China, 2011, 30(10): 1
朱晓莹, 潘 峰. 金属纳米多层膜力学性能研究进展 [J]. 中国材料进展, 2011, 30(10): 1
[75] Troche P, Hoffmann J, Heinemann K, et al. Thermally driven shape instabilities of Nb/Cu multilayer structures: Instability of Nb/Cu multilayers [J]. Thin Solid Films, 1999, 353: 33
doi: 10.1016/S0040-6090(99)00365-X
[76] Lee H J, Kwon K W, Ryu C, et al. Thermal stability of a Cu/Ta multilayer: An intriguing interfacial reaction [J]. Acta Mater., 1999, 47: 3965
doi: 10.1016/S1359-6454(99)00257-8
[77] Moszner F, Cancellieri C, Chiodi M, et al. Thermal stability of Cu/W nano-multilayers [J]. Acta Mater., 2016, 107: 345
doi: 10.1016/j.actamat.2016.02.003
[78] Ma Y J, Wei M Z, Sun C, et al. Length scale effect on the thermal stability of nanoscale Cu/Ag multilayers [J]. Mater. Sci. Eng., 2017, A686: 142
[79] Tsaur B Y, Mayer J W, Tu K N. Ion-beam induced metastable Pt2Si3 phase. I. Formation, structure, and properties [J]. J. Appl. Phys., 1980, 51: 5326
doi: 10.1063/1.327446
[80] Gong H R, Liu B X. Influence of interfacial texture on solid-state amorphization and associated asymmetric growth in immiscible Cu-Ta multilayers [J]. Phys. Rev., 2004, 70B: 134202
[81] Gong H R, Kong L T, Lai W S, et al. Metastable phase formation in an immiscible Cu-Ta system studied by ion-beam mixing, ab initio calculation, and molecular dynamics simulation [J]. Acta Mater., 2003, 51: 3885
doi: 10.1016/S1359-6454(03)00213-1
[82] Gong H R, Liu B X. Unusual alloying behavior at the equilibrium immiscible Cu-Nb interfaces [J]. J. Appl. Phys., 2004, 96: 3020
doi: 10.1063/1.1775042
[83] Wang T L, Li J H, Tai K P, et al. Formation of amorphous phases in an immiscible Cu-Nb system studied by molecular dynamics simulation and ion beam mixing [J]. Scr. Mater., 2007, 57: 157
doi: 10.1016/j.scriptamat.2007.03.006
[84] Gong H R, Kong L T, Lai W S, et al. Glass-forming ability determined by an n-body potential in a highly immiscible Cu-W system through molecular dynamics simulations [J]. Phys. Rev., 2003, 68B: 144201
[85] Bai X, Wang T L, Ding N, et al. Nonequilibrium alloy formation in the immiscible Cu-Mo system studied by thermodynamic calculation and ion beam mixing [J]. J. Appl. Phys., 2010, 108: 073534
doi: 10.1063/1.3483953
[86] Gong H R, Kong L T, Liu B X. Metastability of an immiscible Cu-Mo system calculated from first-principles and a derived n-body potential [J]. Phys. Rev., 2004, 69B: 024202
[87] Yan H F, Shen Y X, Guo H B, et al. Metastable phase formation in the immiscible Cu-Co system studied by thermodynamic, molecular dynamics and ab initio calculations together with ion beam mixing [J]. J. Phys.: Condens. Matter, 2007, 19: 026219
doi: 10.1088/0953-8984/19/2/026219
[88] Tai K P, Dai X D, Shen Y X, et al. Formation and structural anomaly of the metastable phases in an immiscible Ag-Mo system studied by ion beam mixing and molecular dynamics simulation [J]. J. Phys. Chem., 2006, 110B: 595
[89] Tai K P, Dai X D, Liu B X. Spinodal decomposition induced in a highly immiscible Ag-Mo system by ion irradiation [J]. Appl. Phys. Lett., 2006, 88: 184103
doi: 10.1063/1.2201868
[90] Liu J B, Li Z C, Liu B X, et al. Stability of a nonequilibrium phase in an immiscible Ag-Ni system studied by ab initio calculations and ion-beam-mixing experiment [J]. Phys. Rev., 2001, 63B: 132204
[91] Zhang R F, Shen Y X, Gong H R, et al. Atomistic modeling of metastable phase selection of a highly immiscible Ag-W system [J]. J. Phys. Soc. Jpn., 2004, 73: 2023
doi: 10.1143/JPSJ.73.2023
[92] Li G P, Huang Q C, Yang L S, et al. Effects of ion implantation on in vitro pollen germination and cellular organization of pollen tube in Pinus thunbergii parl. (Japanese Black Pine) [J]. Plasma Sci. Technol., 2006, 8: 618
doi: 10.1088/1009-0630/8/5/29
[93] Rossi J O, Ueda M, Mello C B, et al. Short repetitive pulses of 50~75 kV applied to plasma immersion implantation of aerospace materials [J]. IEEE Trans. Plasma Sci., 2009, 37: 204
doi: 10.1109/TPS.2008.2005832
[94] Prudêncio L M, Da Silva R C, da Silva M F, et al. Modification and characterization of Al surfaces implanted with Cr ions [J]. Surf. Coat. Technol., 2000, 128-129: 166
doi: 10.1016/S0257-8972(00)00576-4
[95] Duo S W, Li M S, Zhou Y C. Effect of ion implantation upon erosion resistance of polyimide films in space environment [J]. Trans. Nonferrous Met. Soc. China, 2006, 16(Suppl.2): s661
doi: 10.1016/S1003-6326(06)60273-2
[96] Starikov S V, Insepov Z, Rest J, et al. Radiation-induced damage and evolution of defects in Mo [J]. Phys. Rev., 2011, 84B: 104109
[97] Shu S P, Bellon P, Averback R S. Role of point-defect sinks on irradiation-induced compositional patterning in model binary alloys [J]. Phys. Rev., 2015, 91B: 214107
[98] Zolnikov K P, Korchuganov A V, Kryzhevich D S. Dynamics of dislocation loops in radiation-damaged Fe-10Cr crystallites [J]. J. Phys.: Conf. Ser., 2019, 1147: 012084
doi: 10.1088/1742-6596/1147/1/012084
[99] Shu S P, Zhang X, Beach J A, et al. Irradiation-induced formation of nanorod precipitates in a dilute Cu-W alloy [J]. Scr. Mater., 2016, 115: 155
doi: 10.1016/j.scriptamat.2016.01.012
[100] Du J L, Huang Y, Liu J W, et al. Irradiation damage alloying for immiscible alloy systems and its thermodynamic origin [J]. Mater. Des., 2019, 170: 107699
doi: 10.1016/j.matdes.2019.107699
[101] Li L T, Zhang J, Pan X C, et al. Induction of diffusion and construction of metallurgical interfaces directly between immiscible Mo and Ag by irradiation-induced point defects [J]. RSC Adv., 2017, 7: 53763
doi: 10.1039/C7RA11115K
[102] Du J L, Huang Y, Xiao C, et al. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA) [J]. J. Mater. Sci. Technol., 2018, 34: 689
doi: 10.1016/j.jmst.2017.10.009
[103] Liu Z Z. Research on prepartion of laminar metal matrix composites based on immiscible alloy systems with irradiation damage alloying mechanism [D]. Tianjin: Tianjin University, 2012
刘贞贞. 辐照损伤合金化制备互不固溶层状金属基复合材料的研究 [D]. 天津: 天津大学, 2012
[104] Paul A, van Dal M J H, Kodentsov A A, et al. The Kirkendall effect in multiphase diffusion [J]. Acta Mater., 2004, 52: 623
doi: 10.1016/j.actamat.2003.10.007
[105] Jiao X Y, Wang X H, Feng P Z, et al. Microstructure evolution and pore formation mechanism of porous TiAl3 intermetallics via reactive sintering [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 440
[106] Alimadadi H, Kjartansdóttir C, Burrows A, et al. Nickel-aluminum diffusion: A study of evolution of microstructure and phase [J]. Mater. Charact., 2017, 130: 105
doi: 10.1016/j.matchar.2017.05.039
[107] Pan X C, Zhang J, Huang Y, et al. Construction of metallurgical interface with high strength between immiscible Cu and Nb by direct bonding method [J]. J. Alloys Compd., 2017, 723: 1053
doi: 10.1016/j.jallcom.2017.06.314
[108] Zhang J, Huang Y, Liu Y C, et al. Direct diffusion bonding of immiscible tungsten and copper at temperature close to Copper's melting point [J]. Mater. Des., 2018, 137: 473
doi: 10.1016/j.matdes.2017.10.052
[109] Zhang J, Huang Y, Wang Z M, et al. Thermodynamic mechanism for direct alloying of immiscible tungsten and copper at a critical temperature range [J]. J. Alloys Compd., 2019, 774: 939
doi: 10.1016/j.jallcom.2018.09.385
[110] Yi X H. Properties of formation and growth of cluster structures during solidification processes of liquid metal Cu [J]. Mater. Rep., 2015, 29B(24): 122
易学华. 熔体金属铜凝固过程中原子团簇结构的形成与生长特性 [J]. 材料导报, 2015, 29B(24): 122
[111] Yi X H, Liu R S, Tian Z A, et al. Simulation study of effect of cooling rate on evolution of microstructures during solidification of liquid metal Cu [J]. Acta Phys. Sin., 2006, 55: 5386
易学华, 刘让苏, 田泽安等. 冷却速率对液态金属Cu凝固过程中微观结构演变影响的模拟研究 [J]. 物理学报, 2006, 55: 5386
doi: 10.7498/aps.55.5386
[112] Wang H L, Wang X X, Liang H Y. Molecular dynamics simulation and analysis of bulk and surface melting processes for metal Cu [J]. Acta Metall. Sin., 2005, 41: 568
王海龙, 王秀喜, 梁海戈. 金属Cu体熔化与表面熔化行为的分子动力学模拟与分析 [J]. 金属学报, 2005, 41: 568
[113] Yang G Q, Li J F, Shi Q W, et al. Structural and dynamical properties of heterogeneous solid-liquid Ta-Cu interfaces: A molecular dynamics study [J]. Comput. Mater. Sci., 2014, 86: 64
doi: 10.1016/j.commatsci.2014.01.028
[114] Li G L, Wu H Y, Luo H L, et al. Diffusion behavior of Cu/Ta heterogeneous interface under high temperature and high strain: An atomistic investigation [J]. AIP Adv., 2017, 7: 095320
doi: 10.1063/1.4997677
[115] Zhang J M, Chen G X, Xu K W. Atomistic study of self-diffusion in Cu-Ag immiscible alloy system [J]. J. Alloys Compd., 2006, 425: 169
doi: 10.1016/j.jallcom.2006.01.042
[116] Chen S D, Soh A K, Ke F J. Molecular dynamics modeling of diffusion bonding [J]. Scr. Mater., 2005, 52: 1135
doi: 10.1016/j.scriptamat.2005.02.004
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[4] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[5] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[6] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[7] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[8] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[9] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[10] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[11] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[12] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[13] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[14] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[15] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
No Suggested Reading articles found!