Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (2): 129-149    DOI: 10.11900/0412.1961.2020.00347
Current Issue | Archive | Adv Search |
Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy
GAO Yihan, LIU Gang(), SUN Jun()
State Key Laboratory for Mechanical Behavior of Materials, Xi??an Jiaotong University, Xi&#x1001b3 ;an 710049, China
Cite this article: 

GAO Yihan, LIU Gang, SUN Jun. Recent Progress in High-Temperature Resistant Aluminum-Based Alloys: Microstructural Design and Precipitation Strategy. Acta Metall Sin, 2021, 57(2): 129-149.

Download:  HTML  PDF(3765KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Many load-bearing industrial settings require light-weight structural materials with adequate strength. Although commercial aluminum (Al) alloys are suitable for room-temperature applications, their strength at elevated temperatures (300-500oC) is largely reduced by coarsening of the strengthening precipitates. However, high-temperature alternatives such as titanium alloys are much heavier and more expensive than Al alloys. Creating microstructures that remain stable over 300oC is an important goal of the aluminum-manufacturing community. This article focuses on the recent development of high-temperature resistant Al-based alloys. Especially, it discusses the unique microstructural features, selection criteria of the strengthening phase, alloying effects, and microstructural stabilization of aluminum. The strategies summarized in this review are expected to realize the new microstructural architectures of light-weight alloys, which are currently limited to low-temperature service.

Key words:  Al-based alloy      high-temperature mechanical property      microstructural design      thermal stabilization      alloying strategy      nanoprecipitate     
Received:  07 September 2020     
ZTFLH:  TG146.21  
Fund: National Natural Science Foundation of China(51621063);the Programme of Introducing Talents of Discipline to Universities(BP2018008)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00347     OR     https://www.ams.org.cn/EN/Y2021/V57/I2/129

Fig.1  Representative microstructural features of Al-based metal matrix composites (MMCs), including three-dimensional mapping with reinforcement fibers in yellow together with pores in black (a)[20] and cross section of the x-y plane with pores density highlighted by gradient color (b)[20], and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images showing heterogeneous precipitation (c)[26] and misfit dislocations (d)[26] at the TiB2/α-Al interfaces
Fig.2  Representative nanocrystalline structure (a) and second-phase particles (b) in Al-TM-based alloys[36]
Fig.3  Representative nanoprecipitates in 2xxx (a), 6xxx (b), and 7xxx (c) series ageing-hardenable Al-based alloys[46]
Fig.4  Representative equilibrium binary phase diagram of Al-Cu (a)[62] and Al-Sc (b)[64] systems, and diffusivities of conventional alloying elements in Al matrix at 300 and 400oC (c)[12,65,66]
Fig.5  Solute segregation at θ'-Al2Cu/matrix interfaces (a)[83], grain boundaries (b)[84] and the dislocation core (c)[85] in Al-based and Ni-based alloys (bBurgers vector)
Fig.6  Nanostructural hierarchy in a rapid solidification (RS) A356 alloy, containing Si nanoprecipitates highly dispersed in α-Al matrix (a, b) as well as nanoscale Al particles embedded in eutectic Si (c)[124]
Fig.7  Eutectic phases (a, c) and high-temperature mechanical properties (b, d) in Al-Ni-bsed (a, b)[42] and Al-Ce-based (c, d)[45] alloys
Fig.8  Representative atom probe tomography (APT) images showing the Al3(Sc,Zr,Er)-based nanoprecipitates with core-shell structure (a~d)[136], and creep resistance of several Al-Sc-Zr-Er-based alloys at 300oC (e)[139] and 400oC (f)[139] (σthdislocthreshold stress)
Fig.9  Representative TEM (a)[152] and APT (b)[153] images showing the morphology and chemical composition of Ω phase in Al-Cu-Mg-Ag-based alloys, and curves indicating this system has great high-temperature resistance within short period while suffers from rapid softening at high temperature (c)[155] and long duration (t—time) (d)[154]
Fig.10  Segregation energies of solutes at each platelet (a)[169] and triple Mn/Zr/Si segregation at the coherent and semi-coherent interfaces between α-Al matrix and θ'-Al2Cu (b~e)[167]
Fig.11  Strong Sc segregation at θ'-Al2Cu/matrix interface (a~d)[82,91] and Si-mediated reassembly of interfacially segregated Sc atoms (e~h)[171] in the Al-Cu-Sc RR (retrogression and re-ageing) alloy
Fig.12  Targeted atomic locations (a~d) and segregation-sandwiched Sc-Fe-Si segregation (e~m) at θ'-Al2Cu/matrix interface, obtained from high-throughput density functional theory (DFT) calculations and experiments, respectively; and curves showing the ultra-stabilized θ'-Al2Cu precipitates (n) and unprecedent creep resistance (o) at 300oC in the studied Al-Cu-Sc-Fe-Si alloy (ΔρSC,Fe and ΔρFe are the changes in bonding charge density; Lˉθ' is average half length of θ'-Al2Cu precipitates; ε˙ is the steady-state creep rates of the studied alloys, σ—tensile creep stress)[172]
Fig.13  Evolution of Ag distribution in G.P. zone, β'' and β' precipitates in an Ag-microalloyed Al-Mg-Si alloy during ageing process (a~d)[57]
1 Nie Z R, Wen S P, Huang H, et al. Research progress of Er-containing aluminum alloy [J]. Chin. J. Nonferracs Met., 2011, 21: 2361
聂祚仁, 文胜平, 黄 晖等. 铒微合金化铝合金的研究进展 [J]. 中国有色金属学报, 2011, 21: 2361
2 Wang J G, Wang Z T. Advance on wrought aluminium alloys used for aeronautic and astronautic industry (1) [J]. Light Alloy Fabrication Technol., 2013, 41(8): 1
王建国, 王祝堂. 航空航天变形铝合金的进展(1) [J]. 轻合金加工技术, 2013, 41(8): 1
3 Zhou X L, Feng Z Q, Zhu L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579: 67
4 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
5 Wang G Q, Zhao Y H, Tang Y Y. Research progress of bobbin tool friction stir welding of aluminum alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 13
6 Polmear I J, Couper M J. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures [J]. Metall. Trans., 1988, 19A: 1027
7 Polmear I J, Pons G, Barbaux Y, et al. After Concorde: Evaluation of creep resistant Al-Cu-Mg-Ag alloys [J]. Mater. Sci. Technol., 1999, 15: 861
8 Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Mater. China, 2013, 32: 39
张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32: 39
9 Polmear I, StJohn D, Nie J F, et al. Light Alloys: Metallurgy of the Light Metals [M]. 5th Ed., Boston: Butterworth-Heinemann, 2017: 1
10 Gao Y H, Liu G, Sun J. Tailoring the strengthening particles in aluminum alloys by microalloying [J]. Mater. China, 2019, 38: 231
高一涵, 刘 刚, 孙 军. 铝合金析出强化颗粒的微合金化调控 [J]. 中国材料进展, 2019, 38: 231
11 Weakley-Bollin S C, Donlon W, Wolverton C, et al. Modeling the age-hardening behavior of Al-Si-Cu alloys [J]. Metall. Mater. Trans., 2004, 35A: 2407
12 Knipling K E, Dunand D C, Seidman D N. Criteria for developing castable, creep-resistant aluminum-based alloys—A review [J]. Z. Metallkd., 2006, 97: 246
13 Zhang J Y, Gao Y H, Yang C, et al. Microalloying Al alloys with Sc: A review [J]. Rare Met., 2020, 39: 636
14 Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions [J]. Prog. Mater. Sci., 2004, 49: 389
15 Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys [J]. Int. Mater. Rev., 2005, 50: 193
16 Wu H, Fan G H. An overview of tailoring strain delocalization for strength-ductility synergy [J]. Prog. Mater. Sci., 2020, 113: 100675
17 Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals [J]. Science, 2006, 312: 249
18 Yang T, Zhao Y L, Li W P, et al. Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces [J]. Science, 2020, 369: 427
19 Rofman O V, Mikhaylovskaya A V, Kotov A D, et al. AA2024/SiC metal matrix composites simultaneously improve ductility and cracking resistance during elevated temperature deformation [J]. Mater. Sci. Eng., 2020, A790: 139697
20 Kurumlu D, Payton E J, Young M L, et al. High-temperature strength and damage evolution in short fiber reinforced aluminum alloys studied by miniature creep testing and synchrotron microtomography [J]. Acta Mater., 2012, 60: 67
21 Karnesky R A, Meng L, Dunand D C. Strengthening mechanisms in aluminum containing coherent Al3Sc precipitates and incoherent Al2O3 dispersoids [J]. Acta Mater., 2007, 55: 1299
22 Geng R, Zhao Q L, Qiu F, et al. Simultaneously increased strength and ductility via the hierarchically heterogeneous structure of Al-Mg-Si alloys/nanocomposite [J]. Mater. Res. Lett., 2020, 8: 225
23 Tian W S, Zhao Q L, Geng R, et al. Improved creep resistance of Al-Cu alloy matrix composite reinforced with bimodal-sized TiCp [J]. Mater. Sci. Eng., 2018, A713: 190
24 Tian W S, Zhao Q L, Zhang Q Q, et al. Enhanced strength and ductility at room and elevated temperatures of Al-Cu alloy matrix composites reinforced with bimodal-sized TiCp compared with monomodal-sized TiCp [J]. Mater. Sci. Eng., 2018, A724: 368
25 Tan Q Y, Zhang J Q, Sun Q, et al. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Mater., 2020, 196: 1
26 Ma Y, Addad A, Ji G, et al. Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al-Zn-Mg-Cu matrix composite [J]. Acta Mater., 2020, 185: 287
27 Ma Z Y, Tjong S C, Wang Z G. Cyclic and static creep behavior of Al-Cu alloy composite reinforced with in-situ Al2O3 and TiB2 particulates [J]. Mater. Sci. Eng., 1999, A264: 177
28 Spigarelli S, Cabibbo M, Evangelista E, et al. Creep properties of an Al-2024 composite reinforced with SiC particulates [J]. Mater. Sci. Eng., 2002, A328: 39
29 Satyaprasad K, Mahajan Y R, Bhanuprasad V V. Strengthening of Al/20 v/o TiC composites by isothermal heat treatment [J]. Scr. Metall. Mater., 1992, 26: 711
30 Liu G, Zhang G J, Jiang F, et al. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility [J]. Nat. Mater., 2013, 12: 344
31 Vogelsang M, Arsenault R J, Fisher R M. An in situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites [J]. Metall. Trans., 1986, 17A: 379
32 Christman T, Suresh S. Microstructural development in an aluminum alloy—SiC whisker composite [J]. Acta Metall., 1988, 36: 1691
33 Starink M J, Wang P, Sinclair I, et al. Microstrucure and strengthening of Al-Li-Cu-Mg alloys and MMCs: I. Analysis and modelling of microstructural changes [J]. Acta Mater., 1999, 47: 3841
34 Krainikov A V, Neikov O D. Rapidly solidified high-temperature aluminum alloys. I. Structure [J]. Powder Metall. Met. Ceram., 2012, 51: 399
35 Skinner D J, Bye R L, Raybould D, et al. Dispersion strengthened Al-Fe-V-Si alloys [J]. Scr. Metall., 1986, 20: 867
36 Davies R K, Randle V, Marshall G J. Continuous recrystallization—Related phenomena in a commercial Al-Fe-Si alloy [J]. Acta Mater., 1998, 46: 6021
37 Peng L M, Zhu S J, Ma Z Y, et al. High temperature creep deformation of an Al-Fe-V-Si Alloy [J]. Mater. Sci. Eng., 1999, A259: 25
38 Inoue A, Kimura H M, Zhang T. High-strength aluminum- and zirconium-based alloys containing nanoquasicrystalline particles [J]. Mater. Sci. Eng., 2000, A294-296: 727
39 Kawamura Y, Mano H, Inoue A. Nanocrystalline aluminum bulk alloys with a high strength of 1420 MPa produced by the consolidation of amorphous powders [J]. Scr. Mater., 2001, 44: 1599
40 Galano M, Audebert F, Escorial A G, et al. Nanoquasicrystalline Al-Fe-Cr-based alloys. Part II. Mechanical properties [J]. Acta Mater., 2009, 57: 5120
41 Suwanpreecha C, Toinin J P, Michi R A, et al. Strengthening mechanisms in Al-Ni-Sc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates [J]. Acta Mater., 2018, 164: 334
42 Pandey P, Makineni S K, Gault B, et al. On the origin of a remarkable increase in the strength and stability of an Al rich Al-Ni eutectic alloy by Zr addition [J]. Acta Mater., 2019, 170: 205
43 Plotkowski A, Rios O, Sridharan N, et al. Evaluation of an Al-Ce alloy for laser additive manufacturing [J]. Acta Mater., 2017, 126: 507
44 Sims Z C, Rios O R, Weiss D, et al. High performance aluminum-cerium alloys for high-temperature applications [J]. Mater. Horiz., 2017, 4: 1070
45 Liu Y, Michi R A, Dunand D C. Cast near-eutectic Al-12.5 wt.% Ce alloy with high coarsening and creep resistance [J]. Mater. Sci. Eng., 2019, A767: 138440
46 Sun W W, Zhu Y M, Marceau R, et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity [J]. Science, 2019, 363: 972
47 Liu G, Zhang G J, Ding X D, et al. Dependence of fracture toughness on multiscale second phase particles in high strength Al alloys [J]. Mater. Sci. Technol., 2003, 19: 887
48 Seidman D N, Marquis E A, Dunand D C. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys [J]. Acta Mater., 2002, 50: 4021
49 Ardell A J. Precipitation hardening [J]. Metall. Trans., 1985, 16A: 2131
50 Zhu A W, Starke Jr E A. Strengthening effect of unshearable particles of finite size: A computer experimental study [J]. Acta Mater., 1999, 47: 3263
51 Nie J F, Muddle B C. Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates [J]. Acta Mater., 2008, 56: 3490
52 Lumley R N, Polmear I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al-Cu-Mg-Ag alloy [J]. Scr. Mater., 2004, 50: 1227
53 Gao L, Li K, Ni S, et al. The growth mechanisms of θ′ precipitate phase in an Al-Cu alloy during aging treatment [J]. J. Mater. Sci. Technol., 2021, 61: 25
54 Gao Y H, Cao L F, Kuang J, et al. Dual effect of Cu on the Al3Sc nanoprecipitate coarsening [J]. J. Mater. Sci. Technol., 2020, 37: 38
55 Shen Z J, Ding Q Q, Liu C H, et al. Atomic-scale mechanism of the θ''θ' phase transformation in Al-Cu alloys [J]. J. Mater. Sci. Technol., 2017, 33: 1159
56 Wang S, Zhang C, Li X, et al. First-principle investigation on the interfacial structure evolution of the δ'/θ'/δ' composite precipitates in Al-Cu-Li alloys [J]. J. Mater. Sci. Technol., 2020, 58: 205
57 Weng Y Y, Ding L P, Zhang Z Z, et al. Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy [J]. Acta Mater., 2019, 180: 301
58 Hu Z Q, Zhang X J, Wu S S. Microstructure, mechanical properties and die-filling behavior of high-performance die-cast Al-Mg-Si-Mn alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 1344
59 Wang R H, Jiang S Y, Chen B A, et al. Size effect in the Al3Sc dispersoid-mediated precipitation and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2020, 57: 78
60 Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2010, 58: 4814
61 Li Z M, Jiang H C, Wang Y L, et al. Effect of minor Sc addition on microstructure and stress corrosion cracking behavior of medium strength Al-Zn-Mg alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1172
62 Ringer S P, Hono K. Microstructural evolution and age hardening in aluminium alloys: Atom probe field-ion microscopy and transmission electron microscopy studies [J]. Mater. Charact., 2000, 44: 101
63 Røyset J, Ryum N. Scandium in aluminium alloys [J]. Int. Mater. Rev., 2005, 50: 19
64 Marquis E A, Seidman D N. Coarsening kinetics of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy [J]. Acta Mater., 2005, 53: 4259
65 Marumo T, Fujikawa S, Hirano K I. Diffusion of zirconium in aluminum [J]. J. Japan Inst. Light Met., 1973, 23: 17
66 Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation [J]. Mater. Sci. Eng., 2003, A363: 140
67 Ostwald W Z. Analytisch Chemie, Engleman [M]. Leipzig: Engelmann, 1901: 1
68 Ostwald W Z. Blocking of Ostwald ripening allowing long-term stabilization [J]. Phys. Chem., 1901, 37: 385
69 Lifshitz I M, Slezov V V. Kinetics of diffusive decomposition of supersaturated solid solutions [J]. Sov. Phys. JETP, 1959, 35: 331
70 Wagner C. Theorie der alterung von niederschlägen durch umlösen (Ostwald‐Reifung) [J]. Ber. Bunsen. Phys. Chem., 1961, 65: 581
71 Ardell A J. The effect of volume fraction on particle coarsening: Theoretical considerations [J]. Acta Metall., 1972, 20: 61
72 Kuehmann C J, Voorhees P W. Ostwald ripening in ternary alloys [J]. Metall. Mater. Trans., 1996, 27A: 937
73 Philippe T, Voorhees P W. Ostwald ripening in multicomponent alloys [J]. Acta Mater., 2013, 61: 4237
74 Ardell A J, Ozolins V. Trans-interface diffusion-controlled coarsening [J]. Nat. Mater., 2005, 4: 309
75 Calderon H A, Voorhees P W, Murray J L, et al. Ostwald ripening in concentrated alloys [J]. Acta Metall. Mater., 1994, 42: 991
76 Greenwood G W. The growth of dispersed precipitates in solutions [J]. Acta Metall., 1956, 4: 243
77 Boyd J D, Nicholson R B. The coarsening behaviour of θ″ and θ′precipitates in two Al-Cu alloys [J]. Acta Metall., 1971, 19: 1379
78 Orthacker A, Haberfehlner G, Taendl J, et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates [J]. Nat. Mater., 2018, 17: 1101
79 Liu G, Zhang G J, Ding X D, et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates [J]. Mater. Sci. Eng., 2003, A344: 113
80 Radmilovic V, Ophus C, Marquis E A, et al. Highly monodisperse core-shell particles created by solid-state reactions [J]. Nat. Mater., 2011, 10: 710
81 Wettergren K, Schweinberger F F, Deiana D, et al. High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening [J]. Nano Lett., 2014, 14: 5803
82 Gao Y H, Yang C, Zhang J Y, et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300oC [J]. Mater. Res. Lett., 2019, 7: 18
83 Rosalie J M, Bourgeois L. Silver segregation to θ′ (Al2Cu)-Al interfaces in Al-Cu-Ag alloys [J]. Acta Mater., 2012, 60: 6033
84 Wu G, Liu C, Sun L G, et al. Hierarchical nanostructured aluminum alloy with ultrahigh strength and large plasticity [J]. Nat. Commun., 2019, 10: 5099
85 Ding Q Q, Li S Z, Chen L Q, et al. Re segregation at interfacial dislocation network in a nickel-based superalloy [J]. Acta Mater., 2018, 154: 137
86 Booth-Morrison C, Mao Z, Diaz M, et al. Role of silicon in accelerating the nucleation of Al3(Sc, Zr) precipitates in dilute Al-Sc-Zr alloys [J]. Acta Mater., 2012, 60: 4740
87 Vo N Q, Dunand D C, Seidman D N. Improving aging and creep resistance in a dilute Al-Sc alloy by microalloying with Si, Zr and Er [J]. Acta Mater., 2014, 63: 73
88 Vo N Q, Dunand D C, Seidman D N. Role of silicon in the precipitation kinetics of dilute Al-Sc-Er-Zr alloys [J]. Mater. Sci. Eng., 2016, A677: 485
89 Gao Y H, Cao L F, Kuang J, et al. Assembling dual precipitates to improve high-temperature resistance of multi-microalloyed Al-Cu alloys [J]. J. Alloys Compd., 2020, 822: 153629
90 Michi R A, Perrin Toinin J, Farkoosh A R, et al. Effects of Zn and Cr additions on precipitation and creep behavior of a dilute Al-Zr-Er-Si alloy [J]. Acta Mater., 2019, 181: 249
91 Gao Y H, Cao L F, Yang C, et al. Co-stabilization of θ'-Al2Cu and Al3Sc precipitates in Sc-microalloyed Al-Cu alloy with enhanced creep resistance [J]. Mater. Today Nano, 2019, 6: 100035
92 Fuller C B, Murray J L, Seidman D N. Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: Part I—Chemical compositions of Al3(Sc1-xZrx) precipitates [J]. Acta Mater., 2005, 53: 5401
93 van Dalen M E, Dunand D C, Seidman D N. Effects of Ti additions on the nanostructure and creep properties of precipitation-strengthened Al-Sc alloys [J]. Acta Mater., 2005, 53: 4225
94 van Dalen M E, Seidman D N, Dunand D C. Creep- and coarsening properties of Al-0.06 at.% Sc-0.06 at.% Ti at 300-450oC [J]. Acta Mater., 2008, 56: 4369
95 Knipling K E, Dunand D C. Creep resistance of cast and aged Al-0.1Zr and Al-0.1Zr-0.1Ti (at.%) alloys at 300-400oC [J]. Scr. Mater., 2008, 59: 387
96 Esquivel J, Gupta R K. Corrosion behavior and hardness of Al-M (M: Mo, Si, Ti, Cr) alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 333
97 Vander Voort G, Asensio-Lozano J. The Al-Si phase diagram [J]. Microsc. Microanal., 2009, 15: 60
98 Liu D, Atkinson H V, Jones H. Thermodynamic prediction of thixoformability in alloys based on the Al-Si-Cu and Al-Si-Cu-Mg systems [J]. Acta Mater., 2005, 53: 3807
99 Biswas A, Siegel D J, Seidman D N. Simultaneous segregation at coherent and semicoherent heterophase interfaces [J]. Phys. Rev. Lett., 2010, 105: 076102
100 Hernandez-Sandoval J, Garza-Elizondo G H, Samuel A M, et al. The ambient and high temperature deformation behavior of Al-Si-Cu-Mg alloy with minor Ti, Zr, Ni additions [J]. Mater. Des., 2014, 58: 89
101 Mørtsell E A, Qian F, Marioara C D, et al. Precipitation in an A356 foundry alloy with Cu additions—A transmission electron microscopy study [J]. J. Alloys Compd., 2019, 785: 1106
102 Baruch L J, Raju R, Balasubramanian V, et al. Influence of multi-pass friction stir processing on microstructure and mechanical properties of die cast Al-7Si-3Cu aluminum alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 431
103 Nafisi S, Lashkari O, Ghomashchi R, et al. Microstructure and rheological behavior of grain refined and modified semi-solid A356 Al-Si slurries [J]. Acta Mater., 2006, 54: 3503
104 Barrirero J, Li J H, Engstler M, et al. Cluster formation at the Si/liquid interface in Sr and Na modified Al-Si alloys [J]. Scr. Mater., 2016, 117: 16
105 Qiu C R, Miao S N, Li X R, et al. Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy [J]. Mater. Des., 2017, 114: 563
106 Wang T M, Zhao Y F, Chen Z N, et al. Combining effects of TiB2 and La on the aging behavior of A356 alloy [J]. Mater. Sci. Eng., 2015, A644: 425
107 Zamani M, Morini L, Ceschini L, et al. The role of transition metal additions on the ambient and elevated temperature properties of Al-Si alloys [J]. Mater. Sci. Eng., 2017, A693: 42
108 Xu C, Xiao W L, Zheng R X, et al. The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al-Si-Mg alloy [J]. Mater. Des., 2015, 88: 485
109 Pramod S L, Ravikirana, Rao A K P, et al. Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy [J]. Mater. Sci. Eng., 2016, A674: 438
110 Pandee P, Patakham U, Limmaneevichitr C. Microstructural evolution and mechanical properties of Al-7Si-0.3Mg alloys with erbium additions [J]. J. Alloys Compd., 2017, 728: 844
111 Xing Y, Jia Z H, Li J H, et al. Microstructure and mechanical properties of foundry Al-Si-Cu-Hf alloy [J]. Mater. Sci. Eng., 2018, A722: 197
112 Jia Z H, Huang H L, Wang X L, et al. Hafnium in aluminum alloys: A review [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 105
113 Mao F, Yan G Y, Xuan Z J, et al. Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys [J]. J. Alloys Compd., 2015, 650: 896
114 Kakitani R, Cruz C B, Lima T S, et al. Transient directional solidification of a eutectic Al-Si-Ni alloy: Macrostructure, microstructure, dendritic growth and hardness [J]. Materialia, 2019, 7: 100358
115 Asghar Z, Requena G, Boller E. Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys [J]. Acta Mater., 2011, 59: 6420
116 Liao H C, Tang Y Y, Suo X J, et al. Dispersoid particles precipitated during the solutionizing course of Al-12 wt%Si-4 wt%Cu-1.2 wt%Mn alloy and their influence on high temperature strength [J]. Mater. Sci. Eng., 2017, A699: 201
117 Pandee P, Gourlay C M, Belyakov S A, et al. Eutectic morphology of Al-7Si-0.3Mg alloys with scandium additions [J]. Metall. Mater. Trans., 2014, 45A: 4549
118 Rokhlin L L, Dobatkina T V, Kharakterova M L. Structure of the phase equilibrium diagrams of aluminum alloys with scandium [J]. Powder Metall. Met. Ceram., 1997, 36: 128
119 Zakharov V V, Rostova T D. Effect of scandium, transition metals, and admixtures on strengthening of aluminum alloys due to decomposition of the solid solution [J]. Met. Sci. Heat Treat., 2007, 49: 435
120 Bo H, Liu L B, Jin Z P. Thermodynamic analysis of Al-Sc, Cu-Sc and Al-Cu-Sc system [J]. J. Alloys Compd., 2010, 490: 318
121 Jia M, Zheng Z Q, Gong Z. Microstructure evolution of the 1469 Al-Cu-Li-Sc alloy during homogenization [J]. J. Alloys Compd., 2014, 614: 131
122 Kairy S K, Rouxel B, Dumbre J, et al. Simultaneous improvement in corrosion resistance and hardness of a model 2xxx series Al-Cu alloy with the microstructural variation caused by Sc and Zr additions [J]. Corros. Sci., 2019, 158: 108095
123 Du Y, Liu S H, Zhang L J, et al. An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys: Focusing on the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system [J]. Calphad, 2011, 35: 427
124 Dang B, Zhang X, Chen Y Z, et al. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy [J]. Sci. Rep., 2016, 6: 30874
125 Zhang X, Huang L K, Zhang B, et al. Enhanced strength and ductility of A356 alloy due to composite effect of near-rapid solidification and thermo-mechanical treatment [J]. Mater. Sci. Eng., 2019, A753: 168
126 Okamoto H. Al-Ni (aluminum-nickel) [J]. J. Phase Equilib. Diffus., 2004, 25: 394
127 Okamoto H. Al-Ce (aluminum-cerium) [J]. J. Phase Equilib. Diffus., 2011, 32: 392
128 Suwanpreecha C, Pandee P, Patakham U, et al. New generation of eutectic Al-Ni casting alloys for elevated temperature services [J]. Mater. Sci. Eng., 2018, A709: 46
129 Sun Y, Hung C, Hebert R J, et al. Eutectic microstructures in dilute Al-Ce and Al-Co alloys [J]. Mater. Charact., 2019, 154: 269
130 Belov N A, Khvan A V. The ternary Al-Ce-Cu phase diagram in the aluminum-rich corner [J]. Acta Mater., 2007, 55: 5473
131 Tiwary C S, Kashyap S, Chattopadhyay K. Development of alloys with high strength at elevated temperatures by tuning the bimodal microstructure in the Al-Cu-Ni eutectic system [J]. Scr. Mater., 2014, 93: 20
132 Tiwary C S, Kashyap S, Kim D H, et al. Al based ultra-fine eutectic with high room temperature plasticity and elevated temperature strength [J]. Mater. Sci. Eng., 2015, A639: 359
133 Marquis E A, Seidman D N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys [J]. Acta Mater., 2001, 49: 1909
134 Booth-Morrison C, Dunand D C, Seidman D N. Coarsening resistance at 400oC of precipitation-strengthened Al-Zr-Sc-Er alloys [J]. Acta Mater., 2011, 59: 7029
135 Booth-Morrison C, Seidman D N, Dunand D C. Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al-Zr-Sc-Si alloys [J]. Acta Mater., 2012, 60: 3643
136 Erdeniz D, Nasim W, Malik J, et al. Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al-Er-Sc-Zr-Si alloys [J]. Acta Mater., 2017, 124: 501
137 De Luca A, Seidman D N, Dunand D C. Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al-Zr-Sc-Er-Si alloys [J]. Acta Mater., 2018, 165: 1
138 Vo N Q, Seidman D N, Dunand D C. Effect of Si micro-addition on creep resistance of a dilute Al-Sc-Zr-Er alloy [J]. Mater. Sci. Eng., 2018, A734: 27
139 De Luca A, Seidman D N, Dunand D C. Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening [J]. Acta Mater., 2020, 194: 60
140 Guan R G, Shen Y F, Zhao Z Y, et al. A high-strength, ductile Al-0.35Sc-0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates [J]. J. Mater. Sci. Technol., 2017, 33: 215
141 Karnesky R A, Dunand D C, Seidman D N. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er [J]. Acta Mater., 2009, 57: 4022
142 Krug M E, Dunand D C, Seidman D N. Effects of Li additions on precipitation-strengthened Al-Sc and Al-Sc-Yb alloys [J]. Acta Mater., 2011, 59: 1700
143 Wen S P, Gao K Y, Li Y, et al. Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy [J]. Scr. Mater., 2011, 65: 592
144 Wen S P, Gao K Y, Huang H, et al. Precipitation evolution in Al-Er-Zr alloys during aging at elevated temperature [J]. J. Alloys Compd., 2013, 574: 92
145 Liu X X, Du Y, Liu S H, et al. Phase equilibria and crystal structure of ternary compounds in Al-rich corner of Al-Er-Y system at 673 and 873K [J]. J. Mater. Sci. Technol., 2021, 60: 128
146 Wen S P, Xing Z B, Huang H, et al. The effect of erbium on the microstructure and mechanical properties of Al-Mg-Mn-Zr alloy [J]. Mater. Sci. Eng., 2009, A516: 42
147 Gong B, Wen S P, Huang H, et al. Evolution of nanoscale Al3(ZrxEr1-x) precipitates in Al-6Mg-0.7Mn-0.1Zr-0.3Er alloy during annealing [J]. Acta Metall. Sin., 2010, 46: 850
宫 博, 文胜平, 黄 晖等. 退火过程Al-6Mg-0.7Mn-0.1Zr-0.3Er合金中纳米Al3(ZrxEr1-x)析出相的演化 [J]. 金属学报, 2010, 46: 850
148 Wu H, Wen S P, Wu X L, et al. A study of precipitation strengthening and recrystallization behavior in dilute Al-Er-Hf-Zr alloys [J]. Mater. Sci. Eng., 2015, A639: 307
149 Nie Z R. The effect and progress of alloying elements in aluminium [J]. China Nonferrous Met., 2009, (22): 56
聂祚仁. 铝材中合金元素的作用与发展 [J]. 中国有色金属, 2009, (22): 56
150 Bourgeois L, Dwyer C, Weyland M, et al. The magic thicknesses of θ′ precipitates in Sn-microalloyed Al-Cu [J]. Acta Mater., 2012, 60: 633
151 Zheng Y H, Liu Y X, Wilson N, et al. Solute segregation induced sandwich structure in Al-Cu(-Au) alloys [J]. Acta Mater., 2020, 184: 17
152 Bai S, Huang T T, Xu H, et al. Effects of small Er addition on the microstructural evolution and strength properties of an Al-Cu-Mg-Ag alloy aged at 200oC [J]. Mater. Sci. Eng., 2019, A766: 138351
153 Li J H, An Z H, Hage F S, et al. Solute clustering and precipitation in an Al-Cu-Mg-Ag-Si model alloy [J]. Mater. Sci. Eng., 2019, A760: 366
154 Gariboldi E, Bassani P, Albu M, et al. Presence of silver in the strengthening particles of an Al-Cu-Mg-Si-Zr-Ti-Ag alloy during severe overaging and creep [J]. Acta Mater., 2017, 125: 50
155 Bai S, Zhou X W, Liu Z Y, et al. Effects of Ag variations on the microstructures and mechanical properties of Al-Cu-Mg alloys at elevated temperatures [J]. Mater. Sci. Eng., 2014, A611: 69
156 Duan S Y, Wu C L, Gao Z, et al. Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2017, 129: 352
157 Zhu Y K, Poplawsky J D, Li S R, et al. Localized corrosion at nm-scale hardening precipitates in Al-Cu-Li alloys [J]. Acta Mater., 2020, 189: 204
158 Chen Q H, Lin S B, Yang C L, et al. Effect of ultrasonic impact on the microstructure of welded joint of 2195 Al-Li alloy [J]. Acta Metall. Sin. (Engl. Lett.), 2016, 29: 367
159 Chen R, Xu Q Y, Liu B C. Simulation of the dendrite morphology and microsegregation in solidification of Al-Cu-Mg aluminum alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 173
160 Reich L, Murayama M, Hono K. Evolution of Ω phase in an Al-Cu-Mg-Ag alloy—A three-dimensional atom probe study [J]. Acta Mater., 1998, 46: 6053
161 Lumley R N, Morton A J, Polmear I J. Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing [J]. Acta Mater., 2002, 50: 3597
162 Hutchinson C R, Fan X, Pennycook S J, et al. On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag Alloys [J]. Acta Mater., 2001, 49: 2827
163 Biswas A, Siegel D J, Wolverton C, et al. Precipitates in Al-Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation [J]. Acta Mater., 2011, 59: 6187
164 Chen B A, Liu G, Wang R H, et al. Effect of interfacial solute segregation on ductile fracture of Al-Cu-Sc alloys [J]. Acta Mater., 2013, 61: 1676
165 Yang C, Zhang P, Shao D, et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition [J]. Acta Mater., 2016, 119: 68
166 Gao Y H, Kuang J, Zhang J Y, et al. Tailoring precipitation strategy to optimize microstructural evolution, aging hardening and creep resistance in an Al-Cu-Sc alloy by isochronal aging [J]. Mater. Sci. Eng., 2020, A795: 139943
167 Shyam A, Roy S, Shin D, et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation [J]. Mater. Sci. Eng., 2019, A765: 138279
168 Poplawsky J D, Milligan B K, Allard L F, et al. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys [J]. Acta Mater., 2020, 194: 577
169 Shin D, Shyam A, Lee S, et al. Solute segregation at the Al/θ′-Al2Cu interface in Al-Cu alloys [J]. Acta Mater., 2017, 141: 327
170 Yao D M, Zhao W G, Zhao H L, et al. High creep resistance behavior of the casting Al-Cu alloy modified by La [J]. Scr. Mater., 2009, 61: 1153
171 Gao Y H, Cao L F, Kuang J, et al. Si-mediated reassembly of interfacially segregated Sc atoms in an Al-Cu-Sc alloy exposed to high-temperature creep [J]. J. Alloys Compd., 2020, 845: 156266
172 Gao Y H, Guan P F, Su R, et al. Segregation-sandwiched stable interface suffocates nanoprecipitate coarsening to elevate creep resistance [J]. Mater. Res. Lett., 2020, 8: 446
173 Defay R, Bellemans A, Prigogine I. Surface Tension and Adsorption [M]. London: Longmans, 1966: 1
174 Krakauer B W, Seidman D N. Subnanometer scale study of segregation at grain boundaries in an Fe(Si) alloy [J]. Acta Mater., 1998, 46: 6145
175 Deng Y L, Zhang Y Y, Wan L, et al. Three-stage homogenization of Al-Zn-Mg-Cu alloys containing trace Zr [J]. Metall. Mater. Trans., 2013, 44A: 2470
176 Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
177 Jiao Z B, Schuh C A. Nanocrystalline Ag-W alloys lose stability upon solute desegregation from grain boundaries [J]. Acta Mater., 2018, 161: 194
178 Nie J F, Zhu Y M, Liu J Z, et al. Periodic segregation of solute atoms in fully coherent twin boundaries [J]. Science, 2013, 340: 957
179 Zhao X J, Chen H W, Wilson N, et al. Direct observation and impact of co-segregated atoms in magnesium having multiple alloying elements [J]. Nat. Commun., 2019, 10: 3243
180 Gao Y H, Cao L F, Kuang J, et al., Solute repositioning to tune the multiple microalloying effects in an Al-Cu alloy with minor Sc, Fe and Si addition [J]. Mater. Sci. Eng. A, 2020: 140509(in press)
181 Allen C M, O'Reilly K A Q, Cantor B, et al. Intermetallic phase selection in 1XXX Al alloys [J]. Prog. Mater. Sci., 1998, 43: 89
182 Zhang L F, Gao J W, Damoah L N W, et al. Removal of iron from aluminum: A review [J]. Miner. Process. Extractive Metall. Rev., 2012, 33: 99
183 Senkov O N, Shagiev M R, Senkova S V, et al. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties [J]. Acta Mater., 2008, 56: 3723
184 Schöbel M, Pongratz P, Degischer H P. Coherency loss of Al3(Sc,Zr) precipitates by deformation of an Al-Zn-Mg alloy [J]. Acta Mater., 2012, 60: 4247
185 Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120oC on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288
186 Dorin T, Ramajayam M, Babaniaris S, et al. Precipitation sequence in Al-Mg-Si-Sc-Zr alloys during isochronal aging [J]. Materialia, 2019, 8: 100437
187 Jiang S Y, Wang R H. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. J. Mater. Sci. Technol., 2019, 35: 1354
188 Wang J T, Xie L, Luo K Y, et al. Improving creep properties of 7075 aluminum alloy by laser shock peening [J]. Surf. Coat. Technol., 2018, 349: 725
189 Guo M X, Li G J, Zhang Y D, et al. Influence of Zn on the distribution and composition of heterogeneous solute-rich features in peak aged Al-Mg-Si-Cu alloys [J]. Scr. Mater., 2019, 159: 5
190 Li K, Béché A, Song M, et al. Atomistic structure of Cu-containing β″ precipitates in an Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2014, 75: 86
191 Pogatscher S, Antrekowitsch H, Werinos M, et al. Diffusion on demand to control precipitation aging: Application to Al-Mg-Si alloys [J]. Phys. Rev. Lett., 2014, 112: 225701
192 Tu W B, Tang J G, Zhang Y, et al. Effect of Sn and Cu addition on the precipitation and hardening behavior of Al-1.0Mg-0.6Si alloy [J]. Mater. Sci. Eng., 2020, A770: 138515
193 Chen K L, Liu C H, Yang J S, et al. Stabilizing Al-Mg-Si-Cu alloy by precipitation nano-phase control [J]. Mater. Sci. Eng., 2020, A769: 138513
194 Liu C H, Ma P P, Zhan L H, et al. Solute Sn-induced formation of composite β′/β″ precipitates in Al-Mg-Si alloy [J]. Scr. Mater., 2018, 155: 68
195 Liu L M, Lai Y X, Liu C H, et al. Optimized combinatorial properties of an AlMgSi(Cu) alloy achieved by a mechanical-thermal combinatorial process [J]. Acta Metall. Sin. (Engl. Lett.), 2020, 33: 751
196 Matsuda K, Teguri D, Uetani Y, et al. Cu-segregation at the Q′/α-Al interface in Al-Mg-Si-Cu alloy [J]. Scr. Mater., 2002, 47: 833
197 Saito T, Ehlers F J H, Lefebvre W, et al. HAADF-STEM and DFT investigations of the Zn-containing β″ phase in Al-Mg-Si alloys [J]. Acta Mater., 2014, 78: 245
198 Ding L P, Jia Z H, Nie J F, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy [J]. Acta Mater., 2018, 145: 437
199 Saito T, Ehlers F J H, Lefebvre W, et al. Cu atoms suppress misfit dislocations at the β″/Al interface in Al-Mg-Si alloys [J]. Scr. Mater., 2016, 110: 6
200 Weng Y Y, Jia Z H, Ding L P, et al. Special segregation of Cu on the habit plane of lath-like β′ and QP2 precipitates in Al-Mg-Si-Cu alloys [J]. Scr. Mater., 2018, 151: 33
201 Liu M, Zhang X P, Körner B, et al. Effect of Sn and In on the natural ageing kinetics of Al-Mg-Si alloys [J]. Materialia, 2019, 6: 100261
202 Zhang Y D, Jin S B, Trimby P W, et al. Dynamic precipitation, segregation and strengthening of an Al-Zn-Mg-Cu alloy (AA7075) processed by high-pressure torsion [J]. Acta Mater., 2019, 162: 19
203 Cao F H, Zheng J X, Jiang Y, et al. Experimental and DFT characterization of η′ nano-phase and its interfaces in Al-Zn-Mg-Cu alloys [J]. Acta Mater., 2019, 164: 207
204 Chung T F, Yang Y L, Shiojiri M, et al. An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy [J]. Acta Mater., 2019, 174: 351
[1] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[2] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[3] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[4] LIU Yue, TANG Pengzheng, YANG Kunming, SHEN Yiming, WU Zhongguang, FAN Tongxiang. Research Progress on the Interface Design and Interface Response of Irradiation Resistant Metal-Based Nanostructured Materials[J]. 金属学报, 2021, 57(2): 150-170.
[5] LIU Ze, NING Hanwei, LIN Zhangqian, WANG Dongjun. Influence of Spark Plasma Sintering Parameters on the Microstructure and Room-Temperature Mechanical Properties of NiAl-28Cr-5.5Mo-0.5Zr Alloy[J]. 金属学报, 2021, 57(12): 1579-1587.
[6] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[7] Yanqing SU, Tong LIU, Xinzhong LI, Ruirun CHEN, Jingjie GUO, Hengzhi FU. The Evolution of Seeding Technique for the Lamellar Orientation Controlling of γ-TiAl Based Alloys[J]. 金属学报, 2018, 54(5): 647-656.
[8] KANG Mokuang; ZHU Ming. Stabilization of Austenite in Quenched Alloy Steels[J]. 金属学报, 2005, 41(7): 673-679 .
[9] SU Jilong; HU Gengkai. MICROMECHANICAL STUDY ON YIELD STRESS AND THE EFFECTS OF TWINNING FOR γ-TiAl-BASED PST CRYSTALS[J]. 金属学报, 2005, 41(12): 1243-1248 .
[10] CHEN Shanhua; G. Schumacher. Transformation Matrices for Determination of γ/γ Interface Types in Two-Phase TiAl Alloys[J]. 金属学报, 2004, 40(9): 903-908 .
[11] LIAO Bo; WANG Tiansheng; YANG Ke; YUAN Hui; XIAO Furen;LI Yiyi(Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015)(Yanshan University; Qinhuangdao 066004). EFFECT OF THERMOCHEMICAL PROCESSING WITH HYDROGEN ON MICROSTRUCTURE OF SUPER-α2 ALLOY[J]. 金属学报, 1995, 31(5): 223-228.
[12] ZHANG Bing;WAN Xiaojing;WANG Jianguo;ZHANG Ying Shanghai University of Technology. THERMAL STABILITY OF Ti-24Al-11Nb-3V-1Mo ALLOY[J]. 金属学报, 1993, 29(10): 23-27.
No Suggested Reading articles found!