Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (4): 603-612    DOI: 10.11900/0412.1961.2017.00252
Orginal Article Current Issue | Archive | Adv Search |
A First-Principles Study on Basal/Prismatic Reorientation-Induced Twinning Path and Alloying Effect in Hexagonal Metals
Gang ZHOU1,2, Lihua YE1, Hao WANG1(), Dongsheng XU1, Changgong MENG2, Rui YANG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Download:  HTML  PDF(8534KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In hexagonal metals and alloys, deformation twinning plays an important role, because it is closely relevant to the mechanical behaviors. Recent studies have proposed a new twinning mode via direct lattice reorientation, which results in the basal/prismatic boundary, however, some important details remain unanswered, e.g., the twinning path and alloying effect. In this work, first principles calculations were employed to systematically study the reorientation process from basal to prismatic orientation in hexagonal metals and corresponding alloying effect. The result indicates that different activation energies are required to reorient in various hexagonal metals, and among them, the energy in Mg is the lowest and Os is the highest. Shear and shuffle components compose the reorientation process, where the shuffle component always contributes a significant part of the activation energy in Mg, whereas in Ti with sufficient shear strain, subsequent transition becomes energy-downhill. The pure shear was effected by alloying elements in Mg alloys, but pure shuffle in Ti alloys. Under certain shear or shuffle, subsequent activation energy has a complex dependence on alloying elements.

Key words:  hexagonal metal      twinning      first principles calculation      alloying     
Received:  27 June 2017     
ZTFLH:  TG146.2  
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0701304) and National Natural Science Foundation of China (No.51671195)

Cite this article: 

Gang ZHOU, Lihua YE, Hao WANG, Dongsheng XU, Changgong MENG, Rui YANG. A First-Principles Study on Basal/Prismatic Reorientation-Induced Twinning Path and Alloying Effect in Hexagonal Metals. Acta Metall Sin, 2018, 54(4): 603-612.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00252     OR     https://www.ams.org.cn/EN/Y2018/V54/I4/603

Fig.1  Schematics of the initial (a) and final (b) atomic configurations during the basal/prismatic transition
Fig.2  Energy barriers of 19 hexagonal metals during the basal/prismatic transition
Metal Cal. Exp.[21]
Be 1.568 1.574
Mg 1.624 1.623
Sc 1.592 1.555
Ti 1.587 1.584
Y 1.571 1.552
Zr 1.593 1.597
Tc 1.605 1.599
Gd 1.591 1.575
Tb 1.580 1.564
Dy 1.573 1.556
Ho 1.570 1.552
Er 1.569 1.550
Tm 1.570 1.551
Lu 1.583 1.555
Hf 1.581 1.581
Co 1.623 1.615
Ru 1.583 1.576
Re 1.615 1.615
Os 1.606 1.578
Table 1  Calculated and experimental[21] c/a ratios for hexagonal metals
Metal ZPVE Metal ZPVE
meVatom-1 meVatom-1
Be -1.66 Ho 0.14
Mg 0.20 Er 0.17
Sc 0.45 Tm -0.04
Ti -1.21 Lu 0.38
Y 0.02 Hf 0.44
Zr 0.23 Co 0.34
Tc 0.18 Ru 1.44
Gd 1.68 Re -1.61
Tb 1.03 Os 0.96
Dy 0.34
Table 2  Zero-point vibration energy (ZPVE) correction
Fig.3  Relationships of energy barrier and c/a ratio during the basal/prismatic transition in 16 hexagonal metals
Fig.4  Schematics of the shear and shuffle (εy'z'—equivalent shear strain during basal/prismatic transition)(a) the initial and final four-atom supercell shape(b) the four-atom supercell viewed from [12?10]
Fig.5  Reorientation energy maps against the shear and shuffle components in Mg (a) and Ti (b) (The red curves indicate the minimum energy paths of the basal/prismatic transition processes)
Fig.6  Histogram of ΔE in Mg (a) and Ti (b) (ΔE is the shuffle energy at different amount of shear, and the black squares represent the value less than 0)
Fig.7  Reorientation energy maps against the shear and shuffle components in Mg alloyed by Be (a), Al (b), Si (c), La (d), Zr (e) and Mn (f) (The red circles indicate the amount of pure shear given an activation energy of 14 meV/atom)
Fig.8  Reorientation energy maps against the shear and shuffle components Ti alloyed by Al (a), Hf (b), Zr (c), W (d), Cr (e), Nb (f), V (g), Co (h), La (i), Fe (j), Re (k), Os (l), Ru (m) (The red circles indicate the amount of pure shear or pure shuffle given an activation energy of 30 meV/atom)
Fig.9  3D charge density difference maps of initial and 50% basal/prismatic transitional structures with isosurface values of 13 e/nm3 (a~d) and 47 e/nm3 (e~h) in pure Mg (a, b), Mg-La (c, d), pure Ti (e, f) and Ti-La (g, h) (The red circles indicate charge enrichment)
[1] Biget M P, Saada G.Low-temperature plasticity of high purity α-titanium single crystals[J]. Philos. Mag., 1989, 59A: 747
[2] Ostapovets A, Molnár P, Gr?eger R. On basal-prismatic twinning interfaces in magnesium [J]. 6th International Conference on Nanomaterials by Severe Plastic Deformation [C]. Bristol: IOP Publishing, 2014: 012134
[3] Zhang X Y, Lou C, Tu J, et al.Plasticity induced by twin lamellar structure in magnesium alloy[J]. J. Mater. Sci. Technol., 2013, 29: 1123
[4] Lou C, Zhang X Y, Wang R H, et al.Effects of untwinning and {1012} twin lamellar structure on the mechanical properties of Mg alloy[J]. Acta Metall. Sin., 2013, 49: 291(娄超, 张喜燕, 汪润红等. 退孪生行为以及{1012}孪晶片层结构对镁合金力学性能的影响[J]. 金属学报, 2013, 49: 291)
[5] Wang Y N, Huang J C.Texture analysis in hexagonal materials[J]. Mater. Chem. Phys., 2003, 81: 11
[6] Yoo M H, Wei C T.Slip modes of hexagonal-close-packed metals[J]. J. Appl. Phys., 1967, 38: 4317
[7] Shan Z W, Liu B Y.The mechanism of {1012} deformation twinning in magnesium[J]. Acta Metall. Sin., 2016, 52: 1267(单智伟, 刘博宇. Mg的{1012}形变孪晶机制[J]. 金属学报, 2016, 52: 1267)
[8] Liu B Y, Wang J, Li B, et al.Twinning-like lattice reorientation without a crystallographic twinning plane[J]. Nat. Commun., 2014, 5: 3297
[9] Zong H X, Ding X D, Lookman T, et al.Collective nature of plasticity in mediating phase transformation under shock compression[J]. Phys. Rev., 2014, 89B: 220101
[10] Kumar A, Wang J, Tomé C N.First-principles study of energy and atomic solubility of twinning-associated boundaries in hexagonal metals[J]. Acta Mater., 2015, 85: 144
[11] Ishii A, Li J, Ogata S.Shuffling-controlled versus strain-controlled deformation twinning: The case for HCP Mg twin nucleation[J]. Int. J. Plast., 2016, 82: 32
[12] Zhang X Y, Li B, Tu J, et al.Non-classical twinning behavior in dynamically deformed cobalt[J]. Mater. Res. Lett., 2015, 3: 142
[13] Li B, Zhang X Y.Twinning with zero twinning shear[J]. Scr. Mater., 2016, 125: 73
[14] Wu W, Gao Y F, Li N, et al.Intragranular twinning, detwinning, and twinning-like lattice reorientation in magnesium alloys[J]. Acta Mater., 2016, 121: 15
[15] Kresse G, Hafner J.Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium[J]. Phys. Rev., 1994, 49B: 14251
[16] Kresse G, Furthmüller J.Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev., 1996, 54B: 11169
[17] Bl?chl P E.Projector augmented-wave method[J]. Phys. Rev., 1994, 50B: 17953
[18] Kresse G, Joubert D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev., 1999, 59B: 1758
[19] Perdew J P, Burke K, Ernzerhof M.Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77: 3865
[20] Sheppard D, Xiao P H, Chemelewski W, et al.A generalized solid-state nudged elastic band method[J]. J. Chem. Phys., 2012, 136: 074103
[21] Martienssen W, Warlimont H.Springer Handbook of Condensed Matter and Materials Data[M]. Berlin: Springer, 2005: 54
[22] Park J S, Chang Y W. The effect of alloying elements on the c/a ratio of magnesium binary alloys [J]. Adv. Mater. Res., 2007, 26-28: 95
[23] Kim H L, Park J S, Chang Y W.Effects of lattice parameter changes on critical resolved shear stress and mechanical properties of magnesium binary single crystals[J]. Mater. Sci. Eng., 2012, A540: 198
[24] Minárik P, Král R, ?i?ek J, et al.Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP[J]. Acta Mater., 2016, 107: 83
[25] Zheng-Johansson J X, Eriksson O, Johansson B. Systematic behavior of the hexagonal axial ratio for the d transition metals[J]. Phys. Rev., 1999, 59B: 6131
[26] Nan X L, Wang H Y, Zhang L, et al.Calculation of schmid factors in magnesium: Analysis of deformation behaviors[J]. Scr. Mater., 2012, 67: 443
[27] Kwasniak P, Muzyk M, Garbacz H, et al.Influence of oxygen content on the mechanical properties of hexagonal Ti-first principles calculations[J]. Mater. Sci. Eng., 2014, A590: 74
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[3] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[4] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[5] SUN Xinjun,LIU Luojin,LIANG Xiaokai,XU Shuai,YONG Qilong. TiC Precipitation Behavior and Its Effect on Abrasion Resistance of High Titanium Wear-Resistant Steel[J]. 金属学报, 2020, 56(4): 661-672.
[6] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[7] SUN Heng,LIN Xiaoping,ZHOU Bing,ZHAO Shengshi,TANG Qin,DONG Yun. Microstructures and Tensile Deformation Behavior of Directionally Solidified Mg-xGd-0.5Y Alloys[J]. 金属学报, 2020, 56(3): 340-350.
[8] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[9] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[10] Wang LI,Qian SUN,Hongxiang JIANG,Jiuzhou ZHAO. Solidification of Al-Bi Alloy and Influence of Microalloying Element Sn[J]. 金属学报, 2019, 55(7): 831-839.
[11] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[12] Zhipeng WAN, Tao WANG, Yu SUN, Lianxi HU, Zhao LI, Peihuan LI, Yong ZHANG. Dynamic Softening Mechanisms of GH4720Li AlloyDuring Hot Deformation[J]. 金属学报, 2019, 55(2): 213-222.
[13] YANG Yulin, MU Zhangyan, FAN Zheng, DAN Zhenhua, WANG Ying, CHANG Hui. Nanoporous Silver via Electrochemical Dealloying and Its Superior Detection Sensitivity to Formaldehyde[J]. 金属学报, 2019, 55(10): 1302-1310.
[14] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[15] Jun LI,Wenpeng LIU,Yibin REN,Minggang SHEN,Ke YANG. Preparation of Micro Porous Stainless Steel by Physical Vacuum Dealloying[J]. 金属学报, 2017, 53(5): 524-530.
No Suggested Reading articles found!