Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (8): 1001-1010    DOI: 10.11900/0412.1961.2016.00475
Orginal Article Current Issue | Archive | Adv Search |
Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature
Min LI, Jing LIU, Qingwei JIANG()
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

Min LI, Jing LIU, Qingwei JIANG. Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature. Acta Metall Sin, 2017, 53(8): 1001-1010.

Download:  HTML  PDF(1504KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Annealing treatment is an effective method for improving structural stability of ultrafine-grained (UFG) or nanostructured (NS) materials produced by severe plastic deformation (SPD). This work focuses on the effect of annealing temperature on the tensile fracture behavior of UFG Cu produced by accumulative roll bonding (ARB). Annealing treatment was performed for 10 min at temperatures of 100, 150, 200 and 250 ℃. The microstructure of annealed and ARBed UFG Cu was observed by TEM. The uniaxial static tensile test was performed by utilizing fatigue testing machine (IBTC-5000) with an initial strain rate of 10-2 s-1. Fracture morphology was observed by SEM. The results suggested that yield strength and tensile strength decreased after annealing treatment compared with initial sample. However, yield strength and tensile strength of ARB-Cu increased with increasing annealing temperature below recrystallization temperature. When annealing temperature is higher than recrystallization temperature, the strength decreased rapidly. With increasing the annealing temperature, the grain size of ARB-Cu increases and gradually tends to bimodal distribution, and the fracture morphology shows a trend of increasing plasticity gradually. The annealing treatment is helpful to bonding efficiency E. The relationship between the theoretical bonding efficiency E and the ARB passes n can be expressed in E=(1-0.5n)×100%.

Key words:  ultrafine grain      accumulative rolling bonding      annealing      microstructure      fracture morphology     
Received:  25 October 2016     
ZTFLH:  TG146  
Fund: Supported by National Natural Science Foundation of China (No.51201077)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00475     OR     https://www.ams.org.cn/EN/Y2017/V53/I8/1001

Fig.1  TEM images of accumulative roll bonding (ARB)-Cu with initial state (a, b), and annealed states at temperatures of 100 ℃ (c, d) and 200 ℃ (e, f)
Fig.2  Effect of annealing temperature on the grain size distribution of ARB-Cu
Fig.3  Engineering stress-strain curves of ARB-Cu with different annealing temperatures (a) and the curves of yield strength and tensile strength with annealing temperature (Ta) (b)
Fig.4  Low (a, c, e, g) and high (b, d, f, h) magnified SEM images of tensile fracture lateral morphology of ARB-Cu with initial state (a, b), and annealed state at temperatures of 100 ℃ (c, d), 200 ℃ (e, f) and 250 ℃ (g, h)
Fig.5  Low (a) and high (b) magnified SEM images of section surface morphologies of ARB-Cu with annealed state at temperature of 150 ℃
Fig.6  Low (a, c, e, g, i) and high (b, d, f, h, j) magnified SEM images of tensile fracture morphologies of ARB-Cu with initial state (a, b), and annealed state at temperatures of 100 ℃ (c, d), 150 ℃ (e, f), 200 ℃ (g, h) and 250 ℃ (i, j)
Fig.7  Schematic of bonding interface of ARB materials (a—length of sample before rolling per cycle, b—width of sample before rolling per cycle, c—thickness of sample after rolling per cycle)
i n E / %
1 6 98.4
2 5 96.9
3 4 93.8
4 3 87.5
5 2 75.0
6 1 50.0
Table 1  Bonding efficiencies (E) and rolling passes (n) of bonding faces of ARB materials (i—the passes formed the bonding interface)
Fig.8  Changes of the bonding strength indicator with the rolling passes (a) and bonding strength indicator of second bonding surface with annealing temperatures (b) (η—the bonding strength indicator of bonding interface, k—the constant related to rolling passes, σi—fracture strength of sample, σ0—tensile strength of initial sample, T—annealing temperature)
[1] Murashkin M Y, Sabirov I, Medvedev A E, et al.Mechanical and electrical properties of an ultrafine grained Al-8.5 wt. % RE (RE=5.4 wt.% Ce, 3.1 wt.% La) alloy processed by severe plastic deformation[J]. Mater. Des., 2016, 90: 433
[2] Valiev R Z, Estrin Y, Horita Z, et al.Producing bulk ultrafine-grained materials by severe plastic deformation[J]. JOM, 2006, 58(4): 33
[3] Khatibi G, Horky J, Weiss B, et al.High cycle fatigue behaviour of copper deformed by high pressure torsion[J]. Int. J. Fatigue, 2010, 32: 269
[4] Zhan M Y, Li C M, Zhang W W.An EBSD study on the microstructure and texture evolution of AZ31 magnesium alloy during accumulative roll-bonding[J]. Acta Metall. Sin., 2012, 48: 709(詹美燕, 李春明, 张卫文. 累积叠轧焊AZ31镁合金微观组织和织构演变的EBSD研究[J]. 金属学报, 2012, 48: 709)
[5] Tao N R, Lu K.Preparation techniques for nano-structured metallic materials via plastic deformation[J]. Acta Metall. Sin., 2014, 50: 141(陶乃镕, 卢柯. 纳米结构金属材料的塑性变形制备技术[J]. 金属学报, 2014, 50: 141)
[6] Renk O, Hohenwarter A, Eder K, et al.Increasing the strength of nanocrystalline steels by annealing: Is segregation necessary?[J]. Scr. Mater., 2015, 95: 27
[7] Valiev R Z, Sergueeva A V, Mukherjee A K.The effect of annealing on tensile deformation behavior of nanostructured SPD titanium[J]. Scr. Mater., 2003, 49: 669
[8] Jiang Q W, Li X W.Effect of pre-annealing treatment on the compressive deformation and damage behavior of ultrafine-grained copper[J]. Mater. Sci. Eng., 2012, A546: 59
[9] Huang X X, Hansen N, Tsuji N.Hardening by annealing and softening by deformation in nanostructured metals[J]. Science, 2006, 312: 249
[10] Qin X Y, Lee J S, Lee C S.Microstructures and mechanical behavior of bulk nanocrystalline γ-Ni-Fe produced by a mechanochemical method[J]. J Mater. Res., 2002, 17: 991
[11] Kamikawa N, Huang X X, Tsuji N, et al.Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed[J]. Acta Mater., 2009, 57: 4198
[12] Vinogradov A, Kaneko Y, Kitagawa K, et al.Cyclic response of ultrafine-grained copper at constant plastic strain amplitude[J]. Scr. Mater., 1997, 36: 1345
[13] Han W Z, Wu S D, Li S X, et al. Intermediate annealing of pure copper during cyclic equal channel angular pressing [J]. Mater. Sci. Eng., 2008, A483-484: 430
[14] Hongo T, Edalati K, Arita M, et al.Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion[J]. Acta Mater., 2015, 92: 46
[15] Pal-Val P, Pal-Val L, Natsik V, et al.Giant young's modulus variations in ultrafine-grained copper caused by texture changes at post-SPD heat treatment[J]. Arch. Metall. Mater., 2015, 60: 3073
[16] Ren J W, Shan A D.Strengthening and stress drop of ultrafine grain aluminum after annealing[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 2139
[17] Zhao F X, Xu X C, Liu H Q, et al.Effect of annealing treatment on the microstructure and mechanical properties of ultrafine-grained aluminum[J]. Mater. Des., 2014, 53: 262
[18] Tsuji N, Ito Y, Saito Y, et al.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J]. Scr. Mater., 2002, 47: 893
[19] Wang J L, Shi Q N, Qian T C, et al.Recrystallized microstructural evolution of UFG copper prepared by asymmetrical accumulative rolling-bonding process[J]. Trans. Nonferrous Met. Soc., 2010, 20: 559
[20] Dai X Z, Liu J, Han J T.Study on the microstructure and mechanical properties of ultra-fine grain copper strip[J]. Shandong Metall., 2007, 28(5): 40(代秀芝, 刘靖, 韩静涛. 超细晶铜带材的组织及力学性能研究[J]. 山东冶金, 2007, 28(5): 40)
[21] Zhou L, Shi Q N, Wang J L, et al.Effects of recrystallization annealing temperature and time on upon twins in pure copper by AARB[J]. Hot Work. Technol., 2012, 41(13): 29(周蕾, 史庆南, 王军丽等. 异步累积叠轧纯铜再结晶温度、时间对孪晶的影响[J]. 热加工工艺, 2012, 41(13): 29)
[22] Wang J L, Shi Q N, Wang X Q.Study on microstructure and orientation evolution of ultra-fine grained copper prepared by asymmetrical accumulative rolling bonding (AARB) during annealing[J]. J. Mater. Eng., 2008, (11): 5(王军丽, 史庆南, 王效琪. 异步累积叠轧技术制备超细晶铜材退火过程组织及取向研究[J]. 材料工程, 2008, (11): 5)
[23] Xie Z L, Wu X L, Xie J J, et al.Microstructures and compression properties of copper specimens deformed by high-pressure torsion[J]. Acta Metall. Sin., 2008, 44: 803(谢子令, 武晓雷, 谢季佳等. 高压扭转铜试样的微观组织与压缩性能[J]. 金属学报, 2008, 44: 803)
[24] Fattah-Alhosseini A, Imantalab O, Mazaheri Y, et al.Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process[J]. Mater. Sci. Eng., 2016, A650: 8
[25] Azushima A, Kopp R, Korhonen A, et al.Severe plastic deformation (SPD) processes for metals[J]. CIRP Ann. Manuf. Technol., 2008, 57: 716
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!