|
|
Effect of Fe on Microstructure and Coercivity of SmCo-Based Magnets |
Shaoting GONG,Chengbao JIANG,Tianli ZHANG( ) |
School of Materials Science and Engineering, Beihang University, Beijing 100191, China |
|
Cite this article:
Shaoting GONG, Chengbao JIANG, Tianli ZHANG. Effect of Fe on Microstructure and Coercivity of SmCo-Based Magnets. Acta Metall Sin, 2017, 53(6): 726-732.
|
|
Abstract High-temperature permanent magnets have an important application in the aerospace and other high-tech fields, among which 2:17-type SmCo magnets have become the first choice for high-temperature permanent magnets due to the strong magnetic anisotropy and high Curie temperature. Although there are studies on the effect of Fe on the remanence and coercivity, the role that Fe plays on coercivity mechanism of SmCo magnets is still unclear. In this work, Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10~0.16, z=6.90 and 7.40) magnets are prepared and the magnetic properties under different temperatures are investigated. The magnets with an intrinsic coercivity of 603.99 kA/m and a maximum energy product of 87.30 kJ/m3 at 500 ℃ are obtained. It is revealed that at room temperature the coercivity of the magnets increases with increasing Fe content, however, at 500 ℃ the coercivity shows an opposite dependency on Fe content. Moreover, the effect of Fe on coercivity is more obvious at low z value. The phase structure and composition analyses were characterized by XRD and TEM. The results show that with the increase of Fe content, the size of the 2:17R cell phase increases, the volume ratio of cell boundary 1:5H phase decreases, and furthermore, both Fe content in the 2:17R phase and Cu content in the 1:5H phase increase. The variations of Fe and Cu contents in both phases lead to the change of the domain wall energy difference. With the increase of Cu content of 1:5H phase, the domain wall energy of 1:5H phase (γ1:5) drops faster at room temperature, the coercivity is determined by γ2:17-γ1:5, so the coercivity increases with increasing Fe content. While at 500 ℃, due to γ1:5 at its Curie temperature, the coercivity is mainly determined by the domain wall energy of 2:17R phase (γ2:17), which decreases with increasing Fe content. The increase of Fe content at the low z value results in a smaller growth of cell size, which leads to a more significant change in coercivity.
|
Received: 08 September 2016
|
|
Fund: Supported by National Natural Science Foundation of China (No.51471016) and Natural Science Foundation of Beijing (No.2151002) |
[1] | Gutfleisch O, Müller K H, Khlopkov K, et al.Evolution of magnetic domain structures and coercivity in high-performance SmCo 2: 17-type permanent magnets[J]. Acta Mater., 2006, 54: 997 | [2] | Gutfleisch O, Willard M A, Brück E, et al.Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Adv. Mater., 2011, 23: 821 | [3] | Horiuchi Y, Hagiwara M, Okamoto K, et al.Effects of solution treated temperature on the structural and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnet[J]. IEEE Trans. Magn., 2013, 49: 3221 | [4] | Zhang T L, Liu H Y, Liu J H, et al.2:17-type SmCo quasi-single-crystal high temperature magnets[J]. Appl. Phys. Lett., 2015, 106: 162403 | [5] | Wang Q, Jiang C B.Study on SmCo permanent magnets under 350 ℃ moderate temperatures[J]. Acta Metall. Sin., 2011, 47: 1605 | [5] | (王倩, 蒋成保. 350 ℃中温段SmCo永磁材料的研究[J]. 金属学报, 2011, 47: 1605) | [6] | Guo Z H, Li W.Room- and high-temperature magnetic properties of Sm(CobalFexCu0.088Zr0.025)7.5 (x=0~0.30) sintered magnets[J]. Acta Metall. Sin., 2002, 38: 866 | [6] | (郭朝晖, 李卫. Sm(CobalFexCu0.088Zr0.025)7.5 (x=0~0.30)烧结永磁体的磁性及其高温特性[J]. 金属学报, 2002, 38: 866) | [7] | Liu J F, Ding Y, Zhang Y, et al.New rare-earth permanent magnets with an intrinsic coercivity of 10 kOe at 500 ℃[J]. J. Appl. Phys., 1999, 85: 5660 | [8] | Panagiotopoulos I, Matthias T, Niarchos D, et al. Melt-spun Sm (Co, Fe, Cu, Zr)z magnets for high-temperature applications [J]. J. Magn. Magn. Mater., 2002, 242-245: 1304 | [9] | Zhang T L, Liu H Y, Ma Z H, et al.Single crystal growth and magnetic properties of 2:17-type SmCo magnets[J]. J. Alloys Compd., 2015, 637: 253 | [10] | Wang G J, Zheng L, Jiang C B.Magnetic domain structure and temperature dependence of coercivity in Sm (CobalFe0.1Cu0.1Zr0.033)z (z=6.8, 7.4) magnets[J]. J. Magn. Magn. Mater., 2013, 343: 173 | [11] | Li L Y, Yi J H, Huang B Y, et al.Microstructure and magnetic properties of Sm2Co17-based high temperature permanent magnets[J]. Acta Metall. Sin., 2005, 41: 791 | [11] | (李丽娅, 易健宏, 黄伯云等. Sm2Co17基高温稀土永磁材料的显微结构与磁性[J]. 金属学报, 2005, 41: 791) | [12] | Kronmüller H, Goll D.Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm2Co17 based alloys[J]. Scr. Mater., 2002, 47: 545 | [13] | Xiong X Y, Ohkubo T, Koyama T, et al.The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe[J]. Acta Mater., 2004, 52: 737 | [14] | Liu J F, Zhang Y, Hadjipanayis G C.High-temperature magnetic properties and microstructural analysis of Sm(Co, Fe, Cu, Zr)z permanent magnets[J]. J. Magn. Magn. Mater., 1999, 202: 69 | [15] | Wang G J, Jiang C B.The coercivity and domain structure of Sm(CobalFe0.1CuxZr0.033)6.9 (x= 0.07, 0.10, 0.13) high temperature permanent magnets[J]. J. Appl. Phys., 2012, 112: 033909 | [16] | Liu J F, Chui T, Dimitrov D, et al.Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials[J]. Appl. Phys. Lett., 1998, 73: 3007 | [17] | Tang W, Zhang Y, Gabay A M, et al. Anomalous temperature dependence of coercivity in rare earth cobalt magnets [J]. J. Magn. Magn. Mater., 2002, 242-245: 1335 | [18] | Tang W, Zhang Y, Hadjipanayis G C, et al.Influence of Zr and Cu content on the microstructure and coercivity in Sm(CobalFe0.1CuyZrx)8.5 magnets[J]. J. Appl. Phys., 2000, 87: 5308 | [19] | Chen C H, Walmer M S, Walmer M H.Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ? 400 ℃[J]. J. Appl. Phys., 1998, 83: 6706 | [20] | Guo Z H, Pan W, Li W.Sm(Co, Fe, Cu, Zr)z sintered magnets with a maximum operating temperature of 500 ℃[J]. J. Magn. Magn. Mater., 2006, 303: e396 | [21] | Liu J F, Ding Y, Hadjipanayis G C.Effect of iron on the high temperature magnetic properties and microstructure of Sm(Co, Fe, Cu, Zr)z permanent magnets[J]. J. Appl. Phys., 1999, 85: 1670 | [22] | Wang F Z.Modern Methods for Material Analysis [M]. Beijing: Beijing Institute of Technology Press, 2006: 74 | [22] | (王富耻. 材料现代分析测试方法 [M]. 北京: 北京理工大学出版社, 2006: 74) | [23] | Sun T D.A model on the coercivity of the hardened 2-17 rare earth-cobalt permanent magnets[J]. J. Appl. Phys., 1981, 52: 2532 | [24] | Lectard E, Allibert C H, Ballou R.Saturation magnetization and anisotropy fields in the Sm(Co1-xCux)5 phases[J]. J. Appl. Phys., 1994, 75: 6277 | [25] | Miyazaki T, Takahashi M, Yang X B, et al.Formation of metastable compounds and magnetic properties in rapidly quenched (Fe1-xCox)5Sm and (Fe1-xCox)7Sm2 alloy systems[J]. J. Appl. Phys., 1988, 64: 5974 | [26] | Goll D, Kronmüller H, Stadelmaier H H.Micromagnetism and the microstructure of high-temperature permanent magnets[J]. J. Appl. Phys., 2004, 96: 6534 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|