Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (12): 1565-1571    DOI: 10.11900/0412.1961.2016.00043
Orginal Article Current Issue | Archive | Adv Search |
INVESTIGATION ON THE CORROSIVE ANISOTROPY OF Zr-Sn-Fe-Cr-(Nb) ALLOYS IN 500 ℃ SUPER-HEATED STEAM
Jun ZHANG1,2,Meiyi YAO1,2(),Xuankai FENG1,2,Zhigang WANG1,2,Jiao HUANG1,2,Xun DAI3,Jinlong ZHANG1,2,Bangxin ZHOU1,2
1 Institute of Materials, Shanghai University, Shanghai 200072, China
2 Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
3 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
Cite this article: 

Jun ZHANG,Meiyi YAO,Xuankai FENG,Zhigang WANG,Jiao HUANG,Xun DAI,Jinlong ZHANG,Bangxin ZHOU. INVESTIGATION ON THE CORROSIVE ANISOTROPY OF Zr-Sn-Fe-Cr-(Nb) ALLOYS IN 500 ℃ SUPER-HEATED STEAM. Acta Metall Sin, 2016, 52(12): 1565-1571.

Download:  HTML  PDF(5857KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zirconium alloys are widely used as nuclear fuel cladding in water reactors because of their low cross-section for thermal neutron absorption, reasonable mechanical properties and adequate corrosion resistance in high temperature water. Zirconium alloys have a prominent anisotropic characteristic because of the hexagonal close-packed crystal structure. The anisotropic growth of oxide layers is related to corrosion conditions and chemical composition of zirconium alloys. The corrosive anisotropy of Zr-0.72Sn-0.32Fe-0.14Cr and Zr-0.85Sn-0.16Nb-0.37Fe-0.18Cr coarse-grained specimens was investigated in a superheated steam at 500 ℃ and 10.3 MPa by autoclave tests. EBSD, SEM and TEM were used to investigate the microstructures of the alloys and the relationship between the oxide thickness and the grain orientation of the metal matrix. Results showed that the structures of second phase particles (SPPs) can be affected by Nb: the face-centered cubic Zr(Fe, Cr)2 precipitates were mainly detected in Zr-0.72Sn-0.32Fe-0.14Cr alloy, while the face-centered cubic and hexagonal close packed Zr(Nb, Fe, Cr)2 precipitates were observed in the Zr-0.85Sn-0.16Nb-0.37Fe-0.18Cr alloy. No nodular corrosion appeared on the two alloys for 500 h exposure. There was no big difference between the thickness of oxide layers and the grain orientations, i.e. no corrosive anisotropy of the two alloys was presented.

Key words:  zirconium      alloy,      SPPs,      corrosion      resistance,      corrosive      anisotropy,      microstructure     
Received:  26 January 2016     
Fund: Supported by National Natural Science Foundation of China (No.51471102), and the Science and Technology on Reactor Fuel and Materials Laboratory′s Project of Nuclear Power Institute of China (No.STRFML-2015-01)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00043     OR     https://www.ams.org.cn/EN/Y2016/V52/I12/1565

Fig.1  (0001) pole figure of the coarse-grained specimens of alloy A (a) and alloy B (b) (RD—rolling direction, TD—transverse direction)
Fig.2  SEM images of the coarse-grained specimens of alloy A (a) and alloy B (b)
Fig.3  TEM images (a1, b1, c1), and corresponding EDS (a2, b2, c2) and SAED patterns (c1, c2, c3) of particles shown by arrows in Figs.3a1, b1 and c1 respectively for alloy A (a1~a3) and alloy B (b1~c3) (a1~a3) Zr(Fe, Cr)2 (fcc) (b1~b3) Zr(Nb, Fe, Cr)2 (fcc) (c1~c3) Zr(Nb, Fe, Cr)2 (hcp)
Fig.4  Mass gain vs exposure time of alloys A and B for 500 h exposure in super-heated steam at 500 ℃ and 10.3 MPa
Fig.5  Fracture surface images of oxide layers formed on alloys A (a) and B (b) after 500 h exposure in super-heated steam at 500 ℃ and 10.3 MPa
Fig.6  Inverse pole figure showing the orientations of the metal grain surface on which the thickness of the oxide layer was measured (a) and the relationship between the oxide thickness and the grain surface orientations of the metal matrix (b) for alloy A corroded at 500 ℃ in super-heated steam after 500 h exposure
Fig.7  Inverse pole figure showing the orientations of the metal grain surface on which the thickness of the oxide layer was measured (a) and the relationship between the oxide thickness and the grain surface orientations of the metal matrix (b) for alloy B corroded at 500 ℃ in super-heated steam after 500 h exposure
[1] Liu J Z. Nuclear Structure Materials.Beijing: Chemical Industry Press, 2007: 19
[1] (刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 19)
[2] Zhou B X. Chin J Nucl Sci Eng, 1993; 13: 51
[2] (周邦新. 核科学与工程, 1993; 13: 51)
[3] Kim H J, Kim T H, Jeong Y H.J Nucl Mater, 2002; 306: 44
[4] Zhou B X, Peng J C, Yao M Y, Li Q, Xia S, Du C X, Xu G.In: Limb?ck M, Barbéris P eds., Zirconium in the Nuclear Industry: 16th International Symposium, ASTM STP 1529, Baltimore: ASTM International, 2012: 620
[5] Yao M Y, Zhou B X, Li Q, Xia S, Liu W Q.Shanghai Met, 2008; 30(6): 1
[5] (姚美意, 周邦新, 李强, 夏爽, 刘文庆. 上海金属, 2008; 30(6): 1)
[6] Sun G C.Master Thesis, Shanghai University, 2012(孙国成, 上海大学硕士学位论文, 2012)
[7] Wang Z P, Xue Y T, Liu J N, Shi C Z, Zhang Z.J Xi′an Technol Univ, 2010; 30: 166
[7] (王正品, 薛钰婷, 刘江南, 石崇哲, 张琢. 西安工业大学学报, 2010; 30: 166)
[8] Kearns J J.J Nucl Mater, 2001; 299: 171
[9] Sun G C, Zhou B X, Yao M Y, Xie S J, Li Q.Acta Metall Sin, 2012; 48: 1103
[9] (孙国成, 周邦新, 姚美意, 谢世敬, 李强. 金属学报, 2012; 48: 1103)
[10] Zhou B X, Li Q, Yao M Y, Liu W Q, Chu Y L.Corros Prot, 2009; 30: 589
[10] (周邦新, 李强, 姚美意, 刘文庆, 褚于良. 腐蚀与防护, 2009; 30: 589)
[11] IAEA. Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. Austria: IAEA, 1998: 40
[12] Wang B Y, Zhou B X, Wang Z, Huang J, Yao M Y, Zhou J.Acta Metall Sin, 2015; 51: 1545
[12] (王波阳, 周邦新, 王桢, 黄娇, 姚美意, 周军. 金属学报, 2015; 51: 1545)
[13] Charquet D, Tricot R, Wadier, J F.In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry: Eighth Symposium, ASTM STP 1023, Philadelphia: ASTM, 1989: 374
[14] Zhou B X, Li Q, Yao M Y, Xia S, Liu W Q, Chu Y L.Rare Met Mater Eng, 2007; 36: 1129
[14] (周邦新, 李强, 姚美意, 夏爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1129)
[15] Foster J P, Yueh H K, Comstock R J.Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP 1505, Baltimore: ASTM, 2009: 457
[16] Yueh H K, Kesterson R L, Comstock R J, Shah H H, Colburn D J, Dahlback M, Hallstadius L.In: Kammenzind B, Rudling P eds., Zirconium in the Nuclear Industry: 14th International Symposium, ASTM STP 1467, Bridgeport: ASTM, 2005: 330
[17] Wei J, Frankel P, Polatidis E, Blat M, Ambard A, Comstock R J, Hallstadius L, Hudson D, Smith G D W, Grovenor C R M, Klaus M, Cottis R A , Lyon S, Preuss M.Acta Mater, 2013; 61: 4200
[18] Woo O T, Griffiths M.J Nucl Mater, 2009; 384: 77
[19] Zhou B X, Yo M Y, Li Q, Xia S, Liu W Q, Chu Y L.Rare Met Mater Eng, 2007; 36: 1317
[19] (周邦新, 姚美意, 李强, 夏爽, 刘文庆, 褚于良. 稀有金属材料与工程, 2007; 36: 1317)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[7] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[10] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[11] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[12] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[13] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[14] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[15] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
No Suggested Reading articles found!