Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (9): 1089-1095    DOI: 10.11900/0412.1961.2015.00655
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF K4202 CAST NICKEL BASE SUPERALLOY FABRICATED BY SELECTIVE LASER MELTING
Wenpu HUANG,Hanchen YU,Jie YIN,Zemin WANG(),Xiaoyan ZENG
Wuhan National Laboratory of Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article: 

Wenpu HUANG,Hanchen YU,Jie YIN,Zemin WANG,Xiaoyan ZENG. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF K4202 CAST NICKEL BASE SUPERALLOY FABRICATED BY SELECTIVE LASER MELTING. Acta Metall Sin, 2016, 52(9): 1089-1095.

Download:  HTML  PDF(1355KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a cast nickel base superalloy, K4202 is mainly used in aircraft engines due to its high strengths at elevated temperatures, excellent resistance to hot corrosion and favorable weldability. K4202 alloy is usually fabricated by the conventional casting method and mechanical processing, along with macro-segregation and excessive tool wear. As one of the most promising additive manufacturing technologies, selective laser melting (SLM) is able to manufacture high-performance and complex components. According to the requirement of selective laser melting manufactured metal parts with complex structures in aerospace and other fields, K4202 alloy was used as material for SLM in this research and the forming technology, microstructure and mechanical properties of SLMed and heat-treated samples were studied. The results show that the microstructure of samples formed by SLM is composed of dendrites and isometric crystal. The growing direction of dendrites is nearly perpendicular to melt pool traces in most cases. The dendrite structures disappear completely after solution+ageing heat treatment on account of recrystallization and metal carbide precipitates in grains and at grain boundaries. The precipitates are able to improve the strength of the grain boundary due to the pinning effect. The microstructure has no significant changes after ageing heat treatment, but carbide precipitates at grain boundaries as well. The microhardness of SLM samples is uniform on cross section and vertical section. After solution+ageing and ageing heat treatment, there is a significant improvement on the microhardness. The mechanical properties for as-fabricated samples are superior to those of the cast K4202. Besides, the yield strength and tensile strength increase clearly after heat treatments and the mechanical properties is the highest after ageing heat treatment. This is because of the precipitation of γ' strengthening phases. However, the obvious decrease in the ductility occurs at the same time.

Key words:  K4202 alloy      selective laser melting      forming technology      microstructure      mechanical property     
Received:  22 December 2015     
Fund: Supported by High Technology Research and Development Program of China (No.2013AA031606)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00655     OR     https://www.ams.org.cn/EN/Y2016/V52/I9/1089

Fig.1  Schematic of tensile sample (unit: mm)
Fig.2  SEM image of K4202 powder
Fig.3  OM (a, c) and SEM (b, d) images of selective laser melting (SLM) samples on vertical section (a, b) and cross section (c, d)
Fig.4  OM (a) and SEM (b) images of HT1 sample on vertical section, and EDS results of the positions P1 (c) and P2 (d) shown in Fig.4b
Fig.5  OM (a) and SEM (b) images of HT2 sample on vertical section
Fig.6  XRD spectra for K4202 alloy samples at different states
Fig.7  Microhardnesses of K4202 alloy samples at diff
Fig.8  Tensile curves of K4202 alloy samples at different states erent states
Table 1  Tensile properties of K4202 alloy at different states
[1] Wang J M, Shao C, Zhao M H, Cai Q K.Mod Manuf Eng, 2007; (9): 91
[1] (王建明, 邵冲, 赵明汉, 才庆魁. 现代制造工程, 2007; (9): 91)
[2] Costes J P, Guillet Y, Poulachon G, Dessoly M.Int J Mach Tools Manuf, 2007; 47: 1081
[3] Qi H, Azer M, Ritter A.Metall Mater Trans, 2009; 40A: 2410
[4] Zhang D Y, Niu W, Cao X Y, Liu Z. Mater Sci Eng, 2015; A644: 32
[5] Zhang B J, Zhao G P, Zhang W Y, Huang S, Chen S F.Acta Metall Sin, 2015; 51: 1227
[5] (张北江, 赵光普, 张文云, 黄烁, 陈石富. 金属学报, 2015; 51: 1227)
[6] Tian Z J, Gu D D, Shen L D, Xie D Q, Wang D S.Aeron Manuf Technol, 2015; (11): 38
[6] (田宗军, 顾冬冬, 沈理达, 谢德巧, 王东生. 航空制造技术, 2015; (11): 38)
[7] Chen J L, Dong P, Zhang K, He J W, Liang X K.Electromach Mould, 2014; (1): 66
[7] (陈济轮, 董鹏, 张昆, 何京文, 梁晓康. 电加工与模具, 2014; (1): 66)
[8] Cui C X, Hu B M, Zhao L C.Mater Des, 2011; 32: 1684
[9] Yadroitsev I, Smurov I.Phys Procedia, 2010; 5: 551
[10] Vilaro T.Mater Sci Eng, 2012; A534: 446
[11] Kanagarajah P, Brenne F, Niendorf T.Mater Sci Eng, 2013; A588: 188
[12] Wei K W, Wang Z M, Zeng X Y.Mater Lett, 2015; 156: 187
[13] Zhang H, Zhu H H, Qi T, Hu Z H, Zeng X Y.Mater Sci Eng, 2016; A656: 47
[14] Pauly S, L?ber L, Romy P.Mater Today, 2013; 16: 37
[15] Chlebus E, Gruber K, Ku?nicka B, Kurzac J, Kurzynowski T.Mater Sci Eng, 2015; A638: 647
[16] Shi Y S, Lu Z L, Zhang W X, Huang S H, Chen G Q.Chin Surf Eng, 2006; 19(5+): 150
[16] (史玉升, 鲁中良, 章文献, 黄树槐, 陈国清. 中国表面工程, 2006; 19(5+): 150)
[17] Song B, Dong S J, Coddet P, Liao H L, Coddet C.Mater Des, 2014; 53: 1
[18] Wang Z M, Guan K, Gao M, Li X Y, Chen X F, Zeng X Y.J Alloys Compd, 2012; 513: 518
[19] Mumtaz K A, Hopkinson N.J Mater Process Technol, 2010; 210: 279
[20] Li S, Wei Q S, Shi Y S, Zhu Z C, Zhang D Q.J Mater Sci Technol, 2015; 31: 946
[21] Harrison N J, Todd I, Mumtaz K. Acta Mater, 2015; 94: 59
[22] Bi G J, Sun C N, Chen H C, Ng F L, Ma C C K.Mater Des, 2014; 60: 401
[23] Kunze K, Etter T, Gr?sslin J, Shklover V.Mater Sci Eng, 2015; A620: 213
[24] Rickenbacher L, Etter T, Hovel S.Rapid Prototyping J, 2013; 19: 282
[25] Huang Q Y, Li H K.Superalloy. Beijing: Metallurgical Industry Press, 2000: 6
[25] (黄乾尧, 李汉康. 高温合金. 北京:冶金工业出版社, 2000: 6)
[26] Liu Q C, Elambasseril J, Sun S J, Leary M, Brandt M, Sharp P K. Adv Mater Res, 2014; 891: 1519
[27] Loh L E, Liu Z H, Zhang D Q, Mapar M, Sing S L, Chua C K, Yeong W Y.Virtual Phy Prototyping, 2014; 9: 11
[28] He L Z, Zheng Q, Sun X F, Guan H R, Hu Z Q, Tieu A K, Lu C, Zhu H T.Mater Sci Eng, 2005; A397: 297
[29] Guo J T.Materials Science and Engineering for Superalloys. Beijing: Science Press, 2008: 322
[29] (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 322)
[30] Vilaro T, Colin C, Bartout J D, Nazé L, Sennour M.Mater Sci Eng, 2012; A534: 446
[31] Song K, Yu K, Lin X, Chen J, Yang H O, Huang W D.Acta Metall Sin, 2015; 51: 935
[31] (宋衎, 喻凯, 林鑫, 陈静, 杨海欧, 黄卫东. 金属学报, 2015; 51: 935)
[32] Shao C, Li J T, Wu J T, Zhao M H.In: Zhang W ed., Proc 11th China Superalloys Conference, Beijing: Metallurgical Industry Press, 2007: 364
[32] (邵冲, 李俊涛, 吴剑涛, 赵明汉. 见: 张卫主编, 第十一届中国高温合金年会论文集, 北京: 冶金工业出版社, 2007: 364)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!