Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (9): 1036-1044    DOI: 10.11900/0412.1961.2015.00660
Orginal Article Current Issue | Archive | Adv Search |
FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS
Xiaolu GUI1,Baoxiang ZHANG2,Guhui GAO1(),Ping ZHAO3,Bingzhe BAI1,3,Yuqing WENG1,3
1 Materials Science and Engineering Research Center, School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2 GRIKIN Advanced Materials Co. Ltd., Beijing General Research Institute of Nonferrous Metals, Beijing 102200, China
3 Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Cite this article: 

Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS. Acta Metall Sin, 2016, 52(9): 1036-1044.

Download:  HTML  PDF(1800KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Recently, low-cost advanced high strength steels (AHSS) with high toughness and fatigue limit have been developed in order to ensure the safety and lightweight of the engineering components. As promising candidates for next generation of AHSS, the bainite/martensite multiphase high strength steels exhibit excellent combination of strength and toughness due to the refined multiphase microstructure and retained austenite films located between bainitic ferrite laths. The previous works showed that the mechanical properties of bainite/martensite multiphase steels can be further improved through quenching-partitioning-tempering (Q-P-T) process. In the present work, the effect of Q-P-T process on the microstructure and fatigue behaviors of steels was investigated, and the relationship between the microstructure and the fatigue crack propagation was discussed in detail. Here, a 20Mn2SiCrNiMo bainite/martensite multiphase steel was treated by Q-P-T processes: (1) quenching to 200 ℃, partitioning at 280 ℃ for 45 min and finally tempering at 250 ℃ for 2 h (QPT200 sample); (2) quenching to 320 ℃, partitioning at 360 ℃ for 45 min and finally tempering at 250 ℃ for 2 h (QPT320 sample). Microstructure observations showed that the QPT200 sample consisted of leaf-shaped bainite, martensite and filmy retained austenite (RA), while some blocky martensite/austenite (M/A) islands were observed in QPT320 sample. The volume fractions of retained austenite in QPT200 and QPT320 samples are 4.5% and 9.8%, respectively. The fatigue crack propagation rate da/dN and threshold value of fatigue cracking ΔKth were measured using compact-tensile specimens. The results showed that the Q-P-T process parameters had a significant influence on the microstructures and fatigue properties of the bainite/martensite multiphase steels. The bainite/martensite multiphase steel after appropriate Q-P-T treatment (QPT 200 sample in the present work) has higher ΔKth and lower da/dN, which originates from the resistance on fatigue crack propagation due to the presence of leaf-shaped bainite and nanometer-sized retained austenite films. Furthermore, although the volume fraction of retained austenite in QPT320 sample is higher than that in QPT200 sample, the ΔKth of QPT 320 sample is lower than that of QPT200 sample. It is suggested that the effect of retained austenite on the fatigue behaviors depends on its volume fraction, size and morphology.

Key words:  fatigue fracture      bainite      quenching-partitioning-tempering process      retained austenite      microstructure     
Received:  28 December 2015     
Fund: Supported by National Natural Science Foundation of China (No.51271013)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00660     OR     https://www.ams.org.cn/EN/Y2016/V52/I9/1036

Fig.1  Schametic of compact-tensile sample used in fatigue crack propagation rate measurement (unit: mm)
Sample Rm Rp0.2 At Agt AKV
MPa MPa % % Jcm-2
QPT200 1407 1131 15.16 5.43 80
QPT320 1319 996 18.76 8.16 30
Table 1  Mechanical properties of samples QPT200 and QPT320
Fig.2  SEM (a, b) and EBSD (c, d) images of 20MnSiCrNiMo steel for samples QPT200 (a, c) and QPT320 (b, d) (B—bainite, M—martensite, M/A—martensite/austenite island, GB—granular bainite)
Fig.3  Bright-field (a) and dark-field (b) TEM images of retained austenite in QPT200 sample (Double-head arrows in Fig.3a indicate the bainitic ferrite laths, RA—retained austenite)
  Fig.4 da/dNK curves of samples QPT200 and QPT320 under stress ratio R=0.1 (da/dN—fatigue crack propagation rate, ΔK—stress intensity factor)
Fig.5  Fatigue crack growth paths in threshold regime of QPT200 sample (Arrows show crack propagation directions)(a) under smaller magnification(b) when the crack propagation direction is vertical to the long axis of bainitic plates(c) when the crack propagation direction is parallel to the long axis of bainitic plates(d) sho wing the "discontinuous" propagation of crack
Fig.6  Fatigue crack growth paths in threshold regime of QPT320 sample (Arrows show crack propagation directions)
(a) under smaller magnification(b, c) showing the relationship between the M/A islands and the crack paths(d) secondary crack initiation from the M/A island
Fig.7  Fatigue fracture morphologies at near threshold zone (a, c) and propagation zone (b, d) of samples QPT200 (a, b) and QPT320 (c, d)
[1] Rong Y H.Acta Metall Sin, 2011; 47: 1483
[1] (戎咏华. 金属学报, 2011; 47: 1483)
[2] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426-432: 1089
[3] Zhao P, Gao G H,Misra R D K, Bai B Z. Mater Sci Eng, 2015; A630: 1
[4] Zhang Y J, Hui W J, Xiang J Z, Dong H, Weng Y Q.Acta Metall Sin, 2009; 45: 880
[4] (张永健, 惠卫军, 项金钟, 董瀚, 翁宇庆. 金属学报, 2009; 45: 880)
[5] Gao G H, Zhang H, Tan Z L, Liu W B, Bai B Z.Mater Sci Eng, 2013; A559: 165
[6] Zhang C, Fang H S, Yang Z G, Bai B Z, Zhang W Z.Acta Metall Sin, 2001; 37: 561
[6] (张弛, 方鸿生, 杨志刚, 白秉哲, 张文征. 金属学报, 2001; 37: 561)
[7] Parker E R.Metall Trans, 1977; 8A: 1025
[8] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H.Acta Metall Sin, 2011; 47: 489
[8] (张柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董瀚. 金属学报, 2011; 47: 489)
[9] Blonde R, Jimenez-Melero E, Zhao L, Wright J P, Bruck E, Zwaag van der S, Dijk van N H.Mater Sci Eng, 2014; A618: 280
[10] Speer J G, Matlock D K, Cooman B C, Shroch J G.Acta Mater, 2003; 51: 2661
[11] Edmonds D V, He K, Rizzo F C, Cooman De B C, Matlock D K, Speer J G. Mater Sci Eng, 2006; A438-440: 25
[12] Wang X D, Guo Z H, Rong Y H.Mater Sci Eng, 2011; A529: 35
[13] Zhou S, Zhang K, Wang Y, Gu J F, Rong Y H.Mater Sci Eng, 2011; A528: 8006
[14] Gao G H, Zhang H, Gui X L, Tan Z L, Bai B Z, Weng Y Q.Acta Mater, 2015; 101: 31
[15] Gao G H, Zhang H, Gui X L, Luo P, Tan Z L, Bai B Z.Acta Mater, 2014; 76: 425
[16] Wei D Y, Gu J L, Fang H S, Bai B Z.Acta Metall Sin, 2003; 39: 734
[16] (韦东远, 顾家琳, 方鸿生, 白秉哲. 金属学报, 2003; 39: 734)
[17] Yu Y, Gu J L, Bai B Z, Liu Y B, Li S X.Mater Sci Eng, 2009; A527: 212
[18] de Diego-Calderon I, Rodriguez-Calvillo P, Lara A, Molina-Aldareguia J M, Petrov R H, De Knijf D, Sabirov I.Mater Sci Eng, 2015; A641: 215
[19] Fan X.Metallic X-Ray Physics. Beijing: Mechanical Industry Press, 1989: 159
[19] (范雄.金属X射线学. 北京: 机械工业出版社, 1989: 159)
[20] Wang S C, Wu Y W, Hua Y, Li Z C, Zhang H.J Mater Sci, 2010; 45: 5892
[21] Gao G H, Zhang H, Gui X L, Tan Z L, Bai B Z.J Mater Sci Technol, 2015; 31: 199
[22] Hsu T Y, Jin X J, Rong Y H.J Alloys Compd, 2013; 577S: 568
[23] Sun J, Yu H, Wang S, Fan Y.Mater Sci Eng, 2014; A596: 89
[24] Gao G H, Gui X L, An B F, Tan Z L, Bai B Z, Weng Y Q.Acta Metall Sin, 2015; 51: 21
[24] (高古辉, 桂晓露, 安佰锋, 谭谆礼, 白秉哲, 翁宇庆. 金属学报, 2015; 51: 21)
[25] Bhadeshia H K D H, Edmonds D V.Met Sci, 1983; 17: 411
[26] Bhadeshia H K D H, Edmonds D V.Met Sci, 1983; 17: 420
[27] Nie W J, Shang C J, You Y, Zhang X B, Sundaresa S.Acta Metall Sin, 2012; 48: 797
[27] (聂文金, 尚成嘉, 由洋, 张晓兵, Sundaresa S. 金属学报, 2012; 48: 797)
[28] Berns H, Wener L.Theor Appl Fract Mech, 1986; 6: 11
[29] Zhu M L, Xuan F Z, Zhu K L, Wang G Z, Jia T Y.Acta Metall Sin, 2009; 45: 320
[29] (朱明亮, 轩福贞, 朱奎龙, 王国珍, 贾天耀. 金属学报, 2009; 45: 320)
[30] Abareshi M, Emadoddin E.Mater Sci Eng, 2011; A32: 5099
[31] Richman R H, Landgraf R W.Metall Trans, 1975; 6A: 955
[32] Nakagawa H, Miyazaki T.J Mater Sci, 1999; 34: 3901
[33] Parker E R.Metall Trans, 1977; 8A: 1025
[34] Huang W G, Fang H S, Zheng Y K.Acta Metall Sin, 2001; 37: 927
[34] (黄维刚, 方鸿生, 郑燕康. 金属学报, 2001; 37: 927)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!