Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 923-930    DOI: 10.11900/0412.1961.2015.00581
Orginal Article Current Issue | Archive | Adv Search |
EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY
Xiaolong LIU1,Chengqi SUN1,Yantian ZHOU2,Youshi HONG1()
1 State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 。
2 Heat Treatment Plant, Wafangdian Bearing Co. Ltd., Dalian 116300, China
Cite this article: 

Xiaolong LIU,Chengqi SUN,Yantian ZHOU,Youshi HONG. EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY. Acta Metall Sin, 2016, 52(8): 923-930.

Download:  HTML  PDF(1553KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Titanium alloys have been widely used as superior engineering materials because of their high specific strength, high temperature resistance and high corrosion resistance. In their engineering applications such as used in aircraft engines, titanium alloys may experience even 1010 fatigue cycles. Recently, faceted crack initiation was observed in high-cycle fatigue (HCF) and very-high-cycle fatigue (VHCF) regimes of titanium alloys, which resulted in a sharp decrease in fatigue strength. Therefore, the HCF and VHCF of titanium alloys have both scientific significance and engineering requirement. In this work, the effects of microstructure and stress ratio (R) on HCF and VHCF of a Ti-6Al-4V alloy have been investigated. Fatigue tests were conducted on a rotating-bending fatigue machine and an ultrasonic fatigue machine. All the fatigue fracture surfaces were observed by SEM. The results show that the HCF and VHCF behaviors of the fully-equiaxed and the bimodal Ti-6Al-4V alloy are similar. The observations of fracture surface indicate that two crack initiation mechanisms prevail, i.e. slip mechanism and cleavage mechanism. With the increase of stress ratio, the crack initiation mechanism switches from slip to cleavage. The S-N curves present the single-line type or the bilinear type. For the cases of rotating-bending and ultrasonic axial cycling with R= -1.0, -0.5 and 0.5, the S-N curves are single-line type corresponding to the slip mechanism or cleavage mechanism. For the cases of R= -0.1 and 0.1, the S-N curves are bilinear type corresponding to both slip and cleavage mechanisms. A model based on fatigue life and fatigue limit is proposed to describe the competition between the two mechanisms, which is in agreement with the experimental results.

Key words:  Ti-6Al-4V alloy      very-high-cycle fatigue      microstructure      stress ratio      slip mechanism      cleavage mechanism     
Received:  12 November 2015     
Fund: Supported by National Natural Science Foundation of China (Nos.11202210 and 11572325)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00581     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/923

Fig.1  Schematics of shape and dimensions of specimens (unit: mm, R—stress ratio)

(a) rotating bending (b) ultrasonic, R= -1.0 (c) ultrasonic, R>-1.0=2.26×107 cyc)

Fig.2  SEM images of Ti-6Al-4V alloy after annealing (700 ℃, 2 h, A.C.) (a) and solution-ageing (920 ℃, 1 h, A.C. + 550 ℃, 4 h, A.C.) (b) heat-treatments (αp—primary α grain, ββ grain, αs—secondary α grain)
Fig.3  EBSD results of Ti-6Al-4V alloy after annealing (a) and solution-ageing (b) heat-treatments
Fig.4  Fatigue crack initiation by slip mechanism (σa—fatigue strength, Nf—fatigue life)

(a) fully-equiaxed microstructure (rotating bending, σa=620 MPa, Nf=4.38×107 cyc)(b) bimodal microstructure (rotating bending, σa=690 MPa, Nf=2.47×105 cyc)

Fig.5  Fatigue crack initiation by cleavage mechanism (arrows show the facets)

(a) fully-equiaxed microstructure (axial loading at R=0.1, σa=339 MPa, Nf=3.09×107 cyc) (b) bimodal microstructure (axial loading at R=0.1, σa=339 MPa, Nf=2.26×107 cyc)

Fig.6  Schematic of interior crack initiation (a) and morphologies of facet (b), rough area (c) and fish-eye (d) by AFM (bimodal microstructure, axial loading at R=0.1, σa=250 MPa, Nf=2.02×107 cyc)
Fig.7  Morphology of cleavage facet (a) and EDS result of facet (b) (bimodal microstructure, axial loading at R=0.1, σa=339 MPa, Nf
Fig.8  Distributions of facet size and primary α grain size
Fig.9  S-N curves of Ti-6Al-4V alloy under rotating bending (R.B.—rotating bending, Sli—fatigue induced by slip mechanism, symbol with arrow—unbroken) (a) fully-equiaxed microstructure (b) bimodal microstructure
Fig.10  S-N curves of Ti-6Al-4V alloy under ultrasonic axial loading (Cle—fatigue induced by cleavage mechanism, symbol with arrow—unbroken) (a) fully-equiaxed microstructure (b) bimodal microstructure
Fig.11  Relation between lgD* and stress amplitude at different stress ratios
Fig.12  Schematic of competition between slip mechanism and cleavage mechanism
[1] Li S X.Int Mater Rev, 2012; 57: 92
[2] Hong Y S, Zhao A G, Qian G A.Acta Metall Sin, 2009; 45: 769
[2] (洪友士, 赵爱国, 钱桂安. 金属学报, 2009; 45: 769)
[3] Liu X L, Sun C Q, Hong Y S.Mater Sci Eng, 2015; A622: 228
[4] Leopold G, Nadot Y, Billaudeau T, Mendez J.Fatigue Fract Eng Mater Struct, 2015; 38: 1026
[5] Ding H S, Shang Z B, Wang Y Z, Chen R R, Guo J J, Fu H Z.Acta Metall Sin, 2015; 51: 569
[5] (丁宏升, 尚子博, 王永喆, 陈瑞润, 郭景杰, 傅恒志. 金属学报, 2015; 51: 569)
[6] Neal F D, Blenkinsop P A.Acta Metall, 1976; 24: 59
[7] Szczepanski C J, Jha S K, Larsen J M, Jones J W.Metall Mater Trans, 2008; 39A: 2841
[8] Chandran K S, Jha S K.Acta Mater, 2005; 53: 1867
[9] Chandran K S, Chang P, Cashman G T.Int J Fatigue, 2010; 32: 482
[10] Oguma H, Nakamura T.Int J Fatigue, 2013; 50: 89
[11] Oguma H, Nakamura T.Scr Mater, 2010; 63: 32
[12] Chandran K S.Nat Mater, 2005; 4: 303
[13] Shanyavskiy A A.Sci China-Phys Mech Astron, 2014; 57: 19
[14] Lei Z Q, Xie J J, Sun C Q, Hong Y S.Sci China-Phys Mech Astron, 2014; 57: 74
[15] Matsunaga H, Sun C, Hong Y, Murakami Y.Fatigue Fract Eng Mater Struct, 2015; 38: 1274
[16] Goodman J.Mechanics Applied Engineering. London: Longman, Green and Co Ltd, 1899: 30
[17] Gerber W. Z Bayer Archit Ing Ver, 1874; 6: 101
[18] Zuo J H, Wang Z G, Han E-H.Mater Sci Eng, 2008; A473: 147
[19] Takeuchi E, Furuya Y, Nagashima N, Matsuoka S.Tetsu Hagané, 2010; 96: 36
[19] (竹内悦男, 古谷佳之, 長島伸夫, 松岡三郎.鉄と鋼, 2010; 96: 36)
[20] Takeuchi E, Furuya Y, Nagashima N, Matsuoka S.Fatigue Fract Eng Mater Struct, 2008; 31: 599
[21] Morrissey R, Nicholas T.Int J Fatigue, 2006; 28: 1577
[22] Basquin O H.Proc Astm, 1910; 10: 625
[23] Sun C, Lei Z, Hong Y.Mech Mater, 2014; 69: 227
[24] Qian G A, Zhou C E, Hong Y S.Acta Mater, 2011; 59: 1321
[25] Hong Y S, Zhao A G, Qian G A, Zhou C E.Metall Mater Trans, 2012; 43A: 2753
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[13] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!