Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 821-830    DOI: 10.11900/0412.1961.2015.00537
Orginal Article Current Issue | Archive | Adv Search |
Jinfeng LI1(),Danyang LIU1,Ziqiao ZHENG1,Yonglai CHEN2,Xuhu ZHANG2
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China.
2 Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China.
Download:  HTML  PDF(1296KB) 
Export:  BibTeX | EndNote (RIS)      

Al-Li alloys are considered as the ideal structural materials for aerospace industry because of their low density, high specific strength and specific elastic modulus as well as low fatigue crack growth rate and good low temperature performance. 2055 Al-Li alloy among new Al-Li alloys developed recently is a super-high strength Al-Li alloy. An important method to improve the performance of Al-Li alloys is to add micro-alloying elements. Er-microalloying in Al alloy has been investigated much, but the study on Al-Li alloy is still seldom reported. In this work, the effect of 0.2%Er and 0.4%Er addition on the microstructure and mechanical properties of 2055 Al-Li alloy sheet with T8 aging (6% cold rolling pre-deformation and aging at 160 ℃) were investigated. The results show that the addition of 0.2% Er significantly decreases the strength by about 50 MPa, but enhances the elongation; the strength is further decreased by about 100 MPa with the addition of 0.4%Er. The precipitate types in Er micro-alloyed Al-Li alloy are not changed with the addition of Er, and the aging precipitates are still T1 (Al2CuLi) and θ' (Al2Cu) phases. In the Er-microalloyed Al-Li alloy, the incubation time of T1 precipitate is longer, and its precipitation rate is decreased, accordingly the aging response is slowed. Meanwhile, under peak-aging condition, the fraction of T1 precipitates, especially θ' precipitates in the Er-microalloyed Al-Li alloy is decreased, which results in a decrease of strength. As Er is added to the Al-Li alloy, Er-contained particles Al8Cu4Er are formed during solidification process, and their amount is increased with the addition increasing. These particles cannot be completely dissolved into the alloy matrix during homogenization process. After solution treatment following cold rolling, they are not yet dissolved into the solid solution. These particles contain Cu and Er simultaneously, and the concentration of dissolved Cu in solid solution is therefore decreased. With increasing Er addition, the Cu concentration in solid solution is further decreased. The precipitation rate of T1 is consequently decreased, slowing the aging response of the Er-microalloyed Al-Li alloy. And this factor also decreases the fraction of T1 and θ' precipitates and lowers the alloy strength.

Key words:  2055 Al-Li alloy      Er micro-alloying      microstructure      strength     
Received:  18 October 2015     
Fund: Supported by National High Technology Research and Development Program of China (No.2013AA032401) and Teacher's Research Foundation of Central South University (No.2013JSJJ001)

Cite this article: 


URL:     OR

Alloy Cu Li
2055 3.58 1.18
2055+0.2%Er 3.56 1.19
2055+0.4%Er 3.60 1.11
Table 1  Cu and Li concentrations of experimental Al-Li alloy(mass fraction/%)
Fig.1  Tensile strength (a), yield strength (b) and elongation (c) of Al-Li alloys as a function of ageing time at T8 ageing (6% cold rolling pre-deformation and ageing at 160 ℃)
Fig.2  SAED patterns (a, c) and TEM images (b, d) of Er-free (a, b) and containing 0.2%Er (c, d) Al-Li alloys after ageing at 160 ℃ for 4 h (Inserts in Figs. 2b and d show the SAED patterns of [112]Al)
Fig.3  Dark field TEM images of Er-free (a, b) and containing 0.2%Er (c, d) Al-Li alloys after T8 peak-ageing (Insets in Figs.3a and c show the SAED patterns of [100]Al and those in Figs.3b and d for [112]Al)
Fig.4  BSE images of cast microstructure of Er-free (a), containing 0.2%Er (b) and 0.4%Er (c) Al-Li alloys
Fig.5  BSE image of cast Al-Li alloy containing 0.2%Er (a) and EDS analyses of particles A (b), B (c) and C (d) in Fig.5a
Fig.6  BSE images of homogenized microstructure of Er-free (a), containing 0.2%Er (b) and 0.4%Er (c) Al-Li alloys
Fig.7  BSE image of homogenized microstructure of Er-free 2055 Al-Li alloy (a) and EDS analysis of particle (arrow) in Fig.7a (b)
Fig.8  BSE images of homogenized Al-Li alloy containing 0.2%Er (a, c) and EDS analyses of particle A in Fig.8a (b) and particle B in Fig.8c (d)
Fig.9  XRD spectra of cast and homogenized Al-Li alloy containing 0.4%Er
Fig.10  BSE images of Al-Li alloy containing 0.2%Er after cold-rolling (a), and then followed by solution treatment (b) and ageing (c), and solutionized Al-Li alloy without Er (d)
Fig.11  BSE image of solutionized microstructure of Al-Li alloy containing 0.4%Er (a) and EDS analyses of particles A (b) and B (c) in Fig.11a
Table 2  Cu and Li concentrations in original Al-Li alloys and their solid solution
[1] Rioja R J, Liu J.Metall Mater Trans, 2012; 43A: 3325
[2] Li J F, Zheng Z Q, Chen Y L, Zhang X H.Aero Mater Technol, 2012; 42(1): 13
[2] (李劲风, 郑子樵, 陈永来, 张绪虎. 宇航材料工艺, 2012; 42(1): 13)
[3] Rioja R J, Denzer D K, Mooy D, Venema G B.In: Weiland H, Rollett A D, Cassada W A, Eds., Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13). Pittsburg: TMS, 2012: 593
[4] Wang R Q, Zheng Z Q, Chen Y Y, Li S C, Wei X Y.Rare Met Mater Eng, 2009; 38: 622
[4] (王瑞琴, 郑子樵, 陈圆圆, 李世晨, 魏修宇. 稀有金属材料与工程, 2009; 38: 622)
[5] Yi H K, Zheng Z Q.J Cent South Univ Technol: Nat Sci, 1999; 30: 292
[5] (易宏坤, 郑子樵. 中南工业大学学报(自然科学版), 1999; 30: 292)
[6] Hirosawa S, Sato T, Kamio A. Mater Sci Eng, 1998; A242: 195
[7] Murayama M, Hono K.Scr Mater, 1998; 38: 1315
[8] Jiang N, Gao X, Zheng Z Q.Trans Nonferrous Met Soc, 2010; 20: 740
[9] Wei X Y, Zheng Z Q, She L J, Chen Q N, Li S C.Rare Met Mater Eng, 2010; 39: 1583
[9] (魏修宇, 郑子樵, 佘玲娟, 陈秋妮, 李世晨. 稀有金属材料与工程, 2010; 39: 1583)
[10] Zhu X H, Zheng Z Q, Zhong S.Chin J Nonferrous Met, 2010; 20: 1861
[10] (朱小辉, 郑子樵, 钟申. 中国有色金属学报, 2010; 20: 1861)
[11] Romios M, Tiraschi R, Parrish C, Babel H W, Ogren J R, Es-Said O S. J Mater Eng Perform, 2005; 14: 641
[12] Yuan Z S, Lu Z, Xie Y H, Dai S L, Liu C S.J Aeron Mater, 2006; 26(3): 79
[12] (袁志山, 陆政, 谢优华, 戴圣龙, 刘常升. 航空材料学报, 2006; 26(3): 79)
[13] Wang Z. Master Thesis, Central South University, Changsha, 2014
[13] (王哲. 中南大学硕士学位论文, 长沙, 2014)
[14] Xu G F, Yang J J, Jin T N, Nie Z R, Yin Z M.Chin J Nonferrous Met, 2006; 16: 768
[14] (徐国富, 杨军军, 金头男, 聂祚仁, 尹志民. 中国有色金属学报, 2006; 16: 768)
[15] Yang J J, Nie Z R, Jin T N, Ruan H Q, Zuo T Y.Chin J Nonferrous Met, 2004; 14: 620
[15] (杨军军, 聂祚仁, 金头男, 阮海琼, 左铁镛. 中国有色金属学报, 2004; 14: 620)
[16] Fu J B, Nie Z R, Yang J J, Jin T N, Zou J X, Zuo T Y.Chin J Rare Met, 2005; 29: 558
[16] (付静波, 聂祚仁, 杨军军, 金头男, 邹景霞, 左铁镛. 稀有金属, 2005; 29: 558)
[17] Xu G F, Mou S Z, Yang J J, Jin T N, Nie Z R, Yin Z M.Trans Nonferrous Met Soc, 2006; 16: 106
[18] Yang J J, Nie Z R, Jin T N, Xu G F, Fu J B, Yuan H Q, Zuo T Y.Trans Nonferrous Met Soc, 2003; 13: 1035
[19] Zhao Z K, Zhou T T, Liu P Y, Chen C Q.Rare Met Mater Eng, 2004; 33: 1108
[19] (赵中魁, 周铁涛, 刘培英, 陈昌麒. 稀有金属材料与工程, 2004; 33: 1108)
[20] Qin X. Master Thesis, Beijing University of Technology, 2004
[20] (秦肖. 北京工业大学硕士学位论文, 2004)
[21] Yang J J, Nie Z R, Jin T N, Xu G F, Fu J B, Zuo T Y.J Chin Rare Earth Soc, 2002; 20: 159
[21] (杨军军, 聂祚仁, 金头男, 徐国富, 付静波, 左铁镛. 中国稀土学报, 2002; 20: 159)
[22] Li Y T, Liu Z Y, Xia Q K, Yu R C, Liu Y B.Trans Mater Heat Treat, 2007; 28(2): 49
[22] (李云涛, 刘志义, 夏卿坤, 余日成, 刘延斌. 材料热处理学报, 2007; 28(2): 49)
[23] Li Y T, Liu Z Y, Xia Q K, Yu R C.J Cent South Univ Technol: Nat Sci, 2006; 37: 1043
[23] (李云涛, 刘志义, 夏卿坤, 余日成. 中南大学学报(自然科学版), 2006; 37: 1043)
[24] Denzer D K, Rioja R J, Rioja R J, Venema G B, Colvin E L.In: Weiland H, Rollett A D, Cassada W A, Eds., Proceedings of the 13th International Conference on Aluminum Alloys (ICAA13). Pittsburg: TMS, 2012: 587
[25] Luo X F, Zheng Z Q, Zhong J F, Zhang H F, Zhong J, Li S C, Li J F.Chin J Nonferrous Met, 2013; 23: 1833
[25] (罗先甫, 郑子樵, 钟继发, 张海锋, 钟警, 李世晨, 李劲风. 中国有色金属学报, 2013; 23: 1833)
[26] Dursun T, Soutis C.Mater Des, 2014; 56: 862
[27] Li J F, Liu P L, Chen Y L, Zhang X H, Zheng Z Q.Trans Nonferrous Met Soc China, 2015; 25: 2103
[28] Zhang J, Zhu R H, Li J F, Ma Y L, Liu D B, Zheng Z Q.Chin J Nonferrous Met, 2015; 25: 3300
[28] (张健, 朱瑞华, 李劲风, 马云龙, 刘德博, 郑子樵. 中国有色金属学报, 2015; 25: 3300)
[29] Decreus B, Deschamps A, De Geuser F, Donnadieu P, Sigli C, Weyland M.Acta Mater, 2013; 61: 2207
[30] Lei G X. Light Alloy Fabr Technol, 1990; (2): 5
[30] (雷广孝. 轻合金加工技术, 1990; (2): 5)
[31] Tang A T.Chin Rare Earths, 1991; 12(5): 48
[31] (汤爱涛. 稀土, 1991; 12(5): 48)
[32] Pan F S, Zhou S Z, Shi G Q, Ding P D.Light Alloy Fabr Technol, 1990; (3): 1
[32] (潘复生, 周守则, 石功奇, 丁培道. 轻合金加工技术, 1990; (3): 1)
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[3] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[8] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[9] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[10] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[11] WANG Cunyu,CHANG Ying,ZHOU Fengluan,CAO Wenquan,DONG Han,WENG Yuqing. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility[J]. 金属学报, 2020, 56(4): 400-410.
[12] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[13] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[14] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[15] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
No Suggested Reading articles found!