|
|
EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD |
Fengyu SONG1,Yanmei LI2,Ping WANG1( ),Fuxian ZHU2 |
1 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China. 2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China. |
|
Cite this article:
Fengyu SONG,Yanmei LI,Ping WANG,Fuxian ZHU. EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD. Acta Metall Sin, 2016, 52(7): 890-896.
|
Abstract In recent years, the components tend to be large-scale and large-span. In order to improve the welding construction efficiency and reduce production costs, the high input welding methods, such as automatic gas electric vertical welding, submerged arc welding, electro slag welding, etc., have been widely used in manufacturing fields, like shipbuilding, buildings, bridges, petrochemical and marine structures, etc.. The domestic iron and steel enterprises and research institutes have cooperated successively to develop a number of heat input welding steel with heat input greater than 400 kJ/cm. However, at present, the welding materials which can be matched with these special steels are still dependent on import. In order to change this passive situation, a new type of flux cored wire has been independently developed in this research. The effects of heat input on the microstructure and impact toughness of the weld metal have been investigated through laboratory tests. The results demonstrate that under the condition of large heat input welding, a large number of fine inclusions are formed and distributed randomly in the weld metal. Substantial amount of interlocked acicular ferritic grains are found around the inclusions, contributing to the high impact toughness for the weld metal. With the increase of heat input value, the number of fine inclusions (smaller than 1 μm) decreases and the tendency of inclusion assembly and growth is found to accelerate. Simultaneously, the nucleation points of acicular ferrite decreased and the grain size of acicular ferrite increased slightly in the weld metal. The impact toughness was deteriorated mildly as well.
|
Received: 13 November 2015
|
Fund: Supported by National Natural Science Foundation of China (No.51174058) |
[1] | Yu S F, Yang K, Lei Y, Yang H.Trans China Weld Inst, 2008; 29(3): 17 | [1] | (余圣甫, 杨可, 雷毅, 杨华. 焊接学报, 2008; 29(3): 17) | [2] | Chai F, Su H, Yang C F, Luo X B.Trans China Weld Inst, 2010; 31(12): 25 | [2] | (柴锋, 苏航, 杨才福, 罗小兵. 焊接学报, 2010; 31(12): 25) | [3] | Lee S, Kim B C, Lee D Y.Scr Metall, 1989; 23: 995 | [4] | Wang G D. Steel Roll, 2010; 27(2): 1(王国栋. 轧钢, 2010; 27(2): 1) | [5] | Xia D X, Shang C J, Sun W H, Hou D H, Chen Y.Trans China Weld Inst, 2011; 32(4): 83 | [5] | (夏佃秀, 尚成嘉, 孙卫华, 侯东华, 陈晔. 焊接学报, 2011; 32(4): 83) | [6] | Sun Z, Huang J H, Zhang H, Zhao X K, Li Q Q.Trans China Weld Inst, 2008; 29(3): 41 | [6] | (孙占, 黄继华, 张华, 赵兴科, 李曲全. 焊接学报, 2008; 29(3): 41) | [7] | Lee J L.Acta Metall Mater, 1994; 42: 3291 | [8] | Tomita Y, Saito N, Tsuzuki T, Tokunaga Y, Okamoto K.ISIJ Int, 1994; 34: 829 | [9] | Yang J H, Wang X Y, Liu G.Iron Steel, 2012; 47(2): 87 | [9] | (杨景红, 王小燕, 刘刚. 钢铁, 2012; 47(2): 87) | [10] | McPherson N A.Ironmaking Steelmaking, 2009; 36(3): 93 | [11] | Hodnik P, Furst C, Pennerstorfer P, Lengauer H.Stahl Eisen, 2008; 128(10): 35 | [12] | Weng Y Q, Kang Y L.Iron Steel, 2010; 45(9): 1 | [13] | Xia W Y, Yang C F, Su H, Chai F, Yong Q L.Iron Steel, 2011; 46(4): 76 | [13] | (夏文勇, 杨才福, 苏航, 柴锋, 雍岐龙. 钢铁, 2011; 46(4): 76) | [14] | Alogab K A, Matlock D K, Speer J G, Kleebe H J.ISIJ Int, 2007; 47: 1034 | [15] | Lee J L, Pan Y T.Mater Sci Eng, 1991; A136: 109 | [16] | Yamashita T, Shimamura J, Oi K, Nagoshi M, Oikawa K, Ishida K.Tetsu Hagané, 2014; 100: 397 | [16] | (山下孝子, 嶋村純二, 大井健次, 名越正泰, 及川勝成, 石田清仁.鉄と鋼, 2014; 100: 397) | [17] | Terada Y, Tamehiro H, Chijiiwa R.Tetsu Hagané, 2004; 90: 812 | [17] | (寺田好男, 為広博,千々岩力男. 鉄と鋼, 2004; 90: 812) | [18] | Omiya Y, Nako H, OkazakiY, Hatano H.J Jpn Weld Soc, 2012; 81(1): 16 | [18] | (大宮良信, 名古秀徳, 岡崎喜臣, 畑野. 溶接学会誌, 2012; 81(1): 16) | [19] | Zhang P Y, Gao C R, Zhu F X.Acta Metall Sin, 2012; 48: 264 | [19] | (张朋彦, 高彩茹, 朱伏先. 金属学报, 2012; 48: 264) | [20] | Zhang P Y, Yan J J, Gao C R, Zhu F X. Iron Steel, 2012; 47(11): 79 | [20] | (张朋彦, 燕际军, 高彩茹, 朱伏先. 钢铁, 2012; 47(11): 79) | [21] | Zhang P Y.PhD Dissertation, Northeastern University, Shenyang, 2011 | [21] | (张朋彦. 东北大学博士学位论文, 沈阳, 2011) | [22] | Song F Y, Zhang P Y, Wang P, Zhu F X. China Metall, 2015; 25(12): 7 | [22] | (宋峰雨, 张朋彦, 王平, 朱伏先. 中国冶金, 2015; 25(12): 7) | [23] | Horigome T, Tsunetomi E, Shinmyo K, Nagano K, Mori N, Kato T.J Jpn Weld Soc, 1978; 47(1): 18 | [23] | (堀籠健男, 常富栄一, 新名恭三, 永野恭一, 森直道, 加藤隆司. 溶接学会誌, 1978; 47(1): 18) | [24] | Ricks R A, Howell P R, Barritte G S.J Mater Sci, 1982; 17: 732 | [25] | Rees G I, Bhadeshia H K D H.Mater Sci Technol, 1994; 10: 353 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|