Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (7): 890-896    DOI: 10.11900/0412.1961.2015.00584
Orginal Article Current Issue | Archive | Adv Search |
EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD
Fengyu SONG1,Yanmei LI2,Ping WANG1(),Fuxian ZHU2
1 Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819, China.
2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China.
Cite this article: 

Fengyu SONG,Yanmei LI,Ping WANG,Fuxian ZHU. EFFECTS OF HEAT INPUT ON THE MICROSTRUC-TURE AND IMPACT TOUGHNESS OF WELD METAL PROCESSED BY A NEW FLUXNOVEL FLUX CORED WIRE WELD. Acta Metall Sin, 2016, 52(7): 890-896.

Download:  HTML  PDF(1406KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, the components tend to be large-scale and large-span. In order to improve the welding construction efficiency and reduce production costs, the high input welding methods, such as automatic gas electric vertical welding, submerged arc welding, electro slag welding, etc., have been widely used in manufacturing fields, like shipbuilding, buildings, bridges, petrochemical and marine structures, etc.. The domestic iron and steel enterprises and research institutes have cooperated successively to develop a number of heat input welding steel with heat input greater than 400 kJ/cm. However, at present, the welding materials which can be matched with these special steels are still dependent on import. In order to change this passive situation, a new type of flux cored wire has been independently developed in this research. The effects of heat input on the microstructure and impact toughness of the weld metal have been investigated through laboratory tests. The results demonstrate that under the condition of large heat input welding, a large number of fine inclusions are formed and distributed randomly in the weld metal. Substantial amount of interlocked acicular ferritic grains are found around the inclusions, contributing to the high impact toughness for the weld metal. With the increase of heat input value, the number of fine inclusions (smaller than 1 μm) decreases and the tendency of inclusion assembly and growth is found to accelerate. Simultaneously, the nucleation points of acicular ferrite decreased and the grain size of acicular ferrite increased slightly in the weld metal. The impact toughness was deteriorated mildly as well.

Key words:  weld metal      high heat input      acicular ferrite      toughness     
Received:  13 November 2015     
Fund: Supported by National Natural Science Foundation of China (No.51174058)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00584     OR     https://www.ams.org.cn/EN/Y2016/V52/I7/890

Heat input Current Voltage Welding speed Mass fraction / %
(kJcm-1) A V (mmmin-1) C Si Mn Al S B O Ti Fe
205 370 35 38 0.08 0.30 1.85 0.41 0.017 0.008 0.060 0.080 Bal.
276 460 38 38 0.09 0.28 2.02 0.40 0.017 0.008 0.061 0.073 Bal.
341 479 45 38 0.09 0.30 1.97 0.40 0.017 0.008 0.061 0.071 Bal.
425 598 45 38 0.08 0.32 1.93 0.40 0.017 0.008 0.061 0.092 Bal.
Table 1  Process parameters of gas-electric vertical welding and chemical compositions of weld metal
Heat input Rm Rp0.2 Rm/Rp0.2 δ Akv(-40 ℃)
(kJcm-1) MPa MPa % J
205 605 440 0.72 24 90
276 663 500 0.75 24 79
341 600 480 0.80 24 71
425 640 470 0.73 24 65
Table 2  Mechanical properties of the weld metal with different heat inputs
Fig.1  EBSD orientation images (a, c) and grain boundary character distributions (b, d) of welded metal with heat inputs of 276 kJ/cm (a, b) and 425 kJ/cm (c, d)
Fig.2  OM (a, c, e, g) and SEM (b, d, f, h) images of the weld metal with heat inputs of 205 kJ/cm (a, b), 276 kJ/cm (c, d), 341 kJ/cm (e, f) and 425 kJ/cm (g, h)
Fig.3  TEM image of an inclusion promoted acicular ferrite (AF) nucleation (a) and EDS analyses of points A~C (b) in weld metal with heat input of 276 kJ/cm
Fig.4  TEM image of an inclusion promoted AF nucleation (a) and EDS analyses of points A~C (b) in weld metal with heat input of 341 kJ/cm
Fig.5  EPMA back scattering image of inclusions distribution in weld metal with heat input of 205 kJ/cm
Fig.6  Inclusions distribution statistical figure of the weld metal
Fig.7  Schematic of AF nucleation in the weld metal
[1] Yu S F, Yang K, Lei Y, Yang H.Trans China Weld Inst, 2008; 29(3): 17
[1] (余圣甫, 杨可, 雷毅, 杨华. 焊接学报, 2008; 29(3): 17)
[2] Chai F, Su H, Yang C F, Luo X B.Trans China Weld Inst, 2010; 31(12): 25
[2] (柴锋, 苏航, 杨才福, 罗小兵. 焊接学报, 2010; 31(12): 25)
[3] Lee S, Kim B C, Lee D Y.Scr Metall, 1989; 23: 995
[4] Wang G D. Steel Roll, 2010; 27(2): 1(王国栋. 轧钢, 2010; 27(2): 1)
[5] Xia D X, Shang C J, Sun W H, Hou D H, Chen Y.Trans China Weld Inst, 2011; 32(4): 83
[5] (夏佃秀, 尚成嘉, 孙卫华, 侯东华, 陈晔. 焊接学报, 2011; 32(4): 83)
[6] Sun Z, Huang J H, Zhang H, Zhao X K, Li Q Q.Trans China Weld Inst, 2008; 29(3): 41
[6] (孙占, 黄继华, 张华, 赵兴科, 李曲全. 焊接学报, 2008; 29(3): 41)
[7] Lee J L.Acta Metall Mater, 1994; 42: 3291
[8] Tomita Y, Saito N, Tsuzuki T, Tokunaga Y, Okamoto K.ISIJ Int, 1994; 34: 829
[9] Yang J H, Wang X Y, Liu G.Iron Steel, 2012; 47(2): 87
[9] (杨景红, 王小燕, 刘刚. 钢铁, 2012; 47(2): 87)
[10] McPherson N A.Ironmaking Steelmaking, 2009; 36(3): 93
[11] Hodnik P, Furst C, Pennerstorfer P, Lengauer H.Stahl Eisen, 2008; 128(10): 35
[12] Weng Y Q, Kang Y L.Iron Steel, 2010; 45(9): 1
[13] Xia W Y, Yang C F, Su H, Chai F, Yong Q L.Iron Steel, 2011; 46(4): 76
[13] (夏文勇, 杨才福, 苏航, 柴锋, 雍岐龙. 钢铁, 2011; 46(4): 76)
[14] Alogab K A, Matlock D K, Speer J G, Kleebe H J.ISIJ Int, 2007; 47: 1034
[15] Lee J L, Pan Y T.Mater Sci Eng, 1991; A136: 109
[16] Yamashita T, Shimamura J, Oi K, Nagoshi M, Oikawa K, Ishida K.Tetsu Hagané, 2014; 100: 397
[16] (山下孝子, 嶋村純二, 大井健次, 名越正泰, 及川勝成, 石田清仁.鉄と鋼, 2014; 100: 397)
[17] Terada Y, Tamehiro H, Chijiiwa R.Tetsu Hagané, 2004; 90: 812
[17] (寺田好男, 為広博,千々岩力男. 鉄と鋼, 2004; 90: 812)
[18] Omiya Y, Nako H, OkazakiY, Hatano H.J Jpn Weld Soc, 2012; 81(1): 16
[18] (大宮良信, 名古秀徳, 岡崎喜臣, 畑野. 溶接学会誌, 2012; 81(1): 16)
[19] Zhang P Y, Gao C R, Zhu F X.Acta Metall Sin, 2012; 48: 264
[19] (张朋彦, 高彩茹, 朱伏先. 金属学报, 2012; 48: 264)
[20] Zhang P Y, Yan J J, Gao C R, Zhu F X. Iron Steel, 2012; 47(11): 79
[20] (张朋彦, 燕际军, 高彩茹, 朱伏先. 钢铁, 2012; 47(11): 79)
[21] Zhang P Y.PhD Dissertation, Northeastern University, Shenyang, 2011
[21] (张朋彦. 东北大学博士学位论文, 沈阳, 2011)
[22] Song F Y, Zhang P Y, Wang P, Zhu F X. China Metall, 2015; 25(12): 7
[22] (宋峰雨, 张朋彦, 王平, 朱伏先. 中国冶金, 2015; 25(12): 7)
[23] Horigome T, Tsunetomi E, Shinmyo K, Nagano K, Mori N, Kato T.J Jpn Weld Soc, 1978; 47(1): 18
[23] (堀籠健男, 常富栄一, 新名恭三, 永野恭一, 森直道, 加藤隆司. 溶接学会誌, 1978; 47(1): 18)
[24] Ricks R A, Howell P R, Barritte G S.J Mater Sci, 1982; 17: 732
[25] Rees G I, Bhadeshia H K D H.Mater Sci Technol, 1994; 10: 353
[1] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[2] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[3] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[4] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[5] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[6] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[7] ZHOU Cheng, ZHAO Tan, YE Qibin, TIAN Yong, WANG Zhaodong, GAO Xiuhua. Effects of Tempering Temperature on Microstructure and Low-Temperature Toughness of 1000 MPa Grade NiCrMoV Low Carbon Alloyed Steel[J]. 金属学报, 2022, 58(12): 1557-1569.
[8] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[9] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] WANG Cong, ZHANG Jin. Fine-Tuning Weld Metal Compositions via Flux Optimization in Submerged Arc Welding: An Overview[J]. 金属学报, 2021, 57(9): 1126-1140.
[11] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[12] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[14] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Effect of Annealing on Microstructure of Thermally Aged 308L Stainless Steel Weld Metal[J]. 金属学报, 2019, 55(5): 555-565.
[15] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
No Suggested Reading articles found!