Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (5): 549-560    DOI: 10.11900/0412.1961.2015.00408
Orginal Article Current Issue | Archive | Adv Search |
TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY
Zhengrong YU1,Xianfei DING2,Lamei CAO3,Yunrong ZHENG1,Qiang FENG1,4()
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2 National Centre for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
4 Beijing Key Laboratory of Special Melting and Reparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Zhengrong YU,Xianfei DING,Lamei CAO,Yunrong ZHENG,Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY. Acta Metall Sin, 2016, 52(5): 549-560.

Download:  HTML  PDF(2138KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A Hf-containing Ni-based alloy was used as the interlayer alloy of TLP bonding for the 2nd (CMSX-4, as-cast condition) and 3rd (SXG3, standard heat treatment condition) generation Ni-based single crystal superalloys containing Re in this work, and the microstructure, composition and micro-hardness of bonding zone were characterized. The results show that the TLP bonding of CMSX-4 and SXG3 alloy were completed after bonded at 1290 ℃ in vacuum for 24 h. These TLP bonding process of CMSX-4 and SXG3 alloys can be explained well using classical TLP model. The diffusion affected zone was not observed during the TLP bonding process. In addition, the heat treatment process of CMSX-4 is shortened by 24 h resulted from the solid solution heat treatment of CMSX-4 alloy has been completed after the process of TLP bonding. The isothermal solidification stage of SXG3 alloy was also accelerated due to the precipitation of HfC at the bonding temperature, resulting in the reduced Hf concentration of Hf in the melting zone. This work also indicates that the interfacial stability of low angle grain boundaries can be investigated by the TLP bonding. The critical misorientation value for discontinuous precipitation of SXG3 alloy along TLP bonding grain boundaries by Hf-containing interlayer alloy was in between 10° and 17° after heat treatment at 1150 ℃.

Key words:  Ni-based single crystal superalloy      TLP bonding      Hf-containing interlayer alloy      microstructure     
Received:  23 July 2015     
Fund: Supported by National Natural Science Foundation of China (No.51071016), High Technology Research and Development Program of China (No.2012AA03A511) and Science Foundation of Ministry of Education of China (No.625010337)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00408     OR     https://www.ams.org.cn/EN/Y2016/V52/I5/549

Alloy Cr Co Mo W Ta Re Al Ti Hf C Ni
CMSX-4 6.5 9.0 0.6 6.0 6.5 3.0 5.6 1.0 0.10 - Bal.
SXG3 4.0 12.0 2.0 6.0 7.0 5.0 5.0 - 0.15 0.02 Bal.
Interlayer 4.5 18.6 - 4.7 - - - - 25.60 - Bal.
Table 1  Nominal compositions of alloys (mass fraction / %)
Fig.1  Schematic of transient liquid phase (TLP) bonding assembles
Fig.2  SEM images of CMSX-4 base alloys (a, f) and TLP bonding zones (b~e) after bonding at 1290 ℃ for 0 h (a), 15 min (b), 6 h (c), 12 h (d), 24 h (e, f) (MZ—melting zone, ISZ—isothermal solidification zone)
Fig.3  Relationships for average width of the MZ (w) (a) and phase fraction of Ni5Hf in the MZ (b) as a function of bonding time (t) at 1290 ℃
Phase Cr Co W Ta Al Ti Hf Ni
Ni5Hf 2.5 7.7 - - 1.0 - 40.3 48.5
γ' phase in eutectic 4.9 9.5 4.9 8.5 6.0 2.0 10.8 53.3
Table 2  Compositions of Ni5Hf and γ' phase in eutectic edge of MZ after bonding at 1290 ℃ for 15 min (mass fraction / %)
Fig.4  SEM image of CMSX-4 alloy MZ and distribution of Hf concentration in γ+γ' eutectic after bonding at 1290 ℃ for 15 min (red line—measure path, yellow line—Hf concentration, EPMA results)
Fig.5  Distributions of Hf concentration in TLP bonding zone and CMSX-4 base alloy after bonding at 1290 ℃ for 6 h (a) and 24 h (b) (The origin of x-axis is the center of bonding zone, EDS results)
Fig.6  Nanoindentation path perpendicular to bonding boundary (a), and hardness and elasticity modulus (b) of CMSX-4 bonding zone and base alloy after bonding at 1290 ℃ for 24 h
Fig.7  SEM images of TLP bonding zone in SXG3 base alloy after bonding at 1290 ℃ for 15 min (a), 6 h (b), 12 h (c) and 24 h (d) (Inset in Fig.7a shows the high magnified image)
Fig.8  SEM image of TLP bonding zone in SXG3 alloy after bonding at 1290 ℃ for 6 h and subsequent water quenching
Fig.9  OM images of bonded SXG3 alloys with different orientations (a) and SEM images of samples with misorientation angles of 10° (b, c) and 17° (d, e) after heat treatment at 1150 ℃ for 5 h (b, d) and 25 h (c, e)
[1] Pollock T M, Tin S.J Propul Power, 2006; 22: 361
[2] Rolls-Royce. The Jet Engine.Derby, United Kingdom: Rolls-Royce Plc, 1986: 45
[3] Kercher D M.US Pat, US3533712 A, 1970
[4] Godfrey D G, Morris M C, Menon M.US Pat, US20130195673 A1, 2013
[5] Finn S R, Schilling J C, Lin W W L, Dindar M, Tyler R P.US Pat, US6607358 B2, 2002
[6] Qu W Q, Zhang Y H.Weld Technol, 2002; 31(3): 4
[6] (曲文卿, 张彦华. 焊接技术, 2002; 31(3): 4)
[7] Duvall D S, Owczarski W A, Paulonis D F.Weld J, 1974; 53: 203
[8] Cook G O, Sorensen C D.J Mater Sci, 2011; 46: 5305
[9] Tokoro K, Wikstrom N P, Ojo O A, Chaturvedi M C.Mater Sci Eng, 2008; A477: 311
[10] Bakhtiari R, Ekrami A, Khan T.Mater Sci Eng, 2012; A546: 291
[11] Li X H, Ye L, Zhong Q P, Xiong H P.J Aeronaut Mater, 2011; 31(6): 1
[11] (李晓红, 叶雷, 钟群鹏, 熊华平. 航空材料学报, 2011; 31(6): 1)
[12] Lang B, Hou J B, Wu S.J Mater Eng, 2010; (10): 32
[12] (郎波, 侯金保, 吴松. 材料工程, 2010; (10): 32)
[13] Li W, Jin T, Hu Z Q. Acta Metall Sin, 2008; 44: 1474
[13] (李文, 金涛, 胡壮麒. 金属学报, 2008; 44: 1474)
[14] Liu J D, Jin T, Zhao N R, Wang J H, Liu J L, Sun X F.Rare Met Mater Eng, 2007; 36: 332
[14] (刘纪德, 金涛, 赵乃仁, 王金辉, 刘金来, 孙晓峰. 稀有金属材料与工程, 2007; 36: 332)
[15] Jalilian F, Jahazi M, Drew R.Mater Sci Eng, 2006; A423: 269
[16] Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2008; 461: 641
[17] Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2009; 469: 270
[18] Pouranvari M, Ekrami A, Kokabi A H.Mater Sci Eng, 2013; A568: 76
[19] Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2013; 563: 143
[20] Zheng Y R, Ruan Z C.Acta Metall Sin, 1990; 26: B119
[20] (郑运荣, 阮中慈. 金属学报, 1990; 26: B119)
[21] Neumeier S, Dinkel M, Pyczak F, G?ken M.Mater Sci Eng, 2011;A528: 815
[22] Dinkel M K, Heinz P, Pyczak F, Volek A, Ott M, Affeldt E, Singer R F.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S R eds., Proc Int Symp on Superalloys, Warrendale, PA, USA: TMS, 2008: 211
[23] Ruan Z C, Wang S C, Zheng Y R.Scr Mater, 1996; 34: 163
[24] Kvasnitskij V V, Kostin A M, Vorob'ev A N, Kulik S G, Nikolaenko V P.Avtom Svarka, 1999; 11: 22
[25] Mao W, Li X H, Zhou Y, Ye L.Trans China Weld Inst, 2011; 32(4): 91
[25] (毛唯, 李晓红, 周媛, 叶雷. 焊接学报, 2011; 32(4): 91)
[26] Cao J, Song X G, Zheng Z J, Feng J C.Trans China Weld Inst, 2011; 32(7): 13
[26] (曹健, 宋晓国, 郑祖金, 冯吉才. 焊接学报, 2011; 32(7): 13)
[27] Pollock T M.Mater Sci Eng, 1995; B32: 255
[28] Cao L M, Li X H, Chen J Y, Xue M, Zhang Y.J Mater Eng, 2011; (10): 7
[28] (曹腊梅, 李相辉, 陈晶阳, 薛明, 张勇. 材料工程, 2011; (10): 7)
[29] Chen J Y, Cao L M, Xue M, Liu L J.Rare Met, 2014; 33(2): 144
[30] Zheng Y R, Cai Y L, Ruan Z C, Ma S W.J Aeronaut Mater, 2006; 26(3): 25
[30] (郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26(3): 25)
[31] Ma S W, Zheng Y R.Chin J Mater Res, 2009; 10: 149
[31] (马书伟, 郑运荣. 材料研究学报, 2009; 10: 149)
[32] Wilson B, Hickman J, Fuchs G.JOM, 2003; 55(3): 35
[33] Zhou Y, Gale W, North T.Int Mater Rev, 1995; 40: 181
[34] Steuer S, Singer R.Metall Mater Trans, 2013; 44A: 2226
[35] Li T, Wang Q Y, Wang A Q, Wen Z X, Yue Z F.Key Eng Mater, 2005; 297: 1489
[36] Cranck J.The Mathematics of Diffusion. 2nd Ed., Oxford: Clarendon Press, 1975: 71
[37] Sheng N, Liu J, Jin T, Sun X F, Hu Z Q.Metall Mater Trans, 2013; 44A: 1793
[38] Karunaratne M, Reed R.Acta Mater, 2003; 51: 2905
[39] Bergner D.Cryst Res Technol, 1972; 7: 651
[40] Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q.Mater Charact, 2011; 62: 545
[41] Wikstrom N, Ojo O, Chaturvedi M.Mater Sci Eng, 2006; A417: 299
[42] Lander J, Kern H, Beach A.J Appl Phys, 1952; 23: 1305
[43] Bridges P J, White C H, Durber G L R. The Nimonic Alloys. Bristol, Great Britain: Edward Arnold Ltd, 1974: 33
[44] Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Proc Int Symp on Superalloys, Warrendale, PA, USA: TMS, 1996: 9
[45] Yang C C, Rollett A, Mullins W.Scr Mater, 2001; 44: 2735
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!