|
|
TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY |
Zhengrong YU1,Xianfei DING2,Lamei CAO3,Yunrong ZHENG1,Qiang FENG1,4( ) |
1 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 2 National Centre for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China 3 Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China 4 Beijing Key Laboratory of Special Melting and Reparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
Zhengrong YU,Xianfei DING,Lamei CAO,Yunrong ZHENG,Qiang FENG. TRANSIENT LIQUID PHASE BONDING OF SECOND AND THIRD GERNERATION Ni-BASED SINGLE CRYSTAL SUPERALLOY WITH Hf-CONTAININGINTERLAYER ALLOY. Acta Metall Sin, 2016, 52(5): 549-560.
|
Abstract A Hf-containing Ni-based alloy was used as the interlayer alloy of TLP bonding for the 2nd (CMSX-4, as-cast condition) and 3rd (SXG3, standard heat treatment condition) generation Ni-based single crystal superalloys containing Re in this work, and the microstructure, composition and micro-hardness of bonding zone were characterized. The results show that the TLP bonding of CMSX-4 and SXG3 alloy were completed after bonded at 1290 ℃ in vacuum for 24 h. These TLP bonding process of CMSX-4 and SXG3 alloys can be explained well using classical TLP model. The diffusion affected zone was not observed during the TLP bonding process. In addition, the heat treatment process of CMSX-4 is shortened by 24 h resulted from the solid solution heat treatment of CMSX-4 alloy has been completed after the process of TLP bonding. The isothermal solidification stage of SXG3 alloy was also accelerated due to the precipitation of HfC at the bonding temperature, resulting in the reduced Hf concentration of Hf in the melting zone. This work also indicates that the interfacial stability of low angle grain boundaries can be investigated by the TLP bonding. The critical misorientation value for discontinuous precipitation of SXG3 alloy along TLP bonding grain boundaries by Hf-containing interlayer alloy was in between 10° and 17° after heat treatment at 1150 ℃.
|
Received: 23 July 2015
|
Fund: Supported by National Natural Science Foundation of China (No.51071016), High Technology Research and Development Program of China (No.2012AA03A511) and Science Foundation of Ministry of Education of China (No.625010337) |
[1] | Pollock T M, Tin S.J Propul Power, 2006; 22: 361 | [2] | Rolls-Royce. The Jet Engine.Derby, United Kingdom: Rolls-Royce Plc, 1986: 45 | [3] | Kercher D M.US Pat, US3533712 A, 1970 | [4] | Godfrey D G, Morris M C, Menon M.US Pat, US20130195673 A1, 2013 | [5] | Finn S R, Schilling J C, Lin W W L, Dindar M, Tyler R P.US Pat, US6607358 B2, 2002 | [6] | Qu W Q, Zhang Y H.Weld Technol, 2002; 31(3): 4 | [6] | (曲文卿, 张彦华. 焊接技术, 2002; 31(3): 4) | [7] | Duvall D S, Owczarski W A, Paulonis D F.Weld J, 1974; 53: 203 | [8] | Cook G O, Sorensen C D.J Mater Sci, 2011; 46: 5305 | [9] | Tokoro K, Wikstrom N P, Ojo O A, Chaturvedi M C.Mater Sci Eng, 2008; A477: 311 | [10] | Bakhtiari R, Ekrami A, Khan T.Mater Sci Eng, 2012; A546: 291 | [11] | Li X H, Ye L, Zhong Q P, Xiong H P.J Aeronaut Mater, 2011; 31(6): 1 | [11] | (李晓红, 叶雷, 钟群鹏, 熊华平. 航空材料学报, 2011; 31(6): 1) | [12] | Lang B, Hou J B, Wu S.J Mater Eng, 2010; (10): 32 | [12] | (郎波, 侯金保, 吴松. 材料工程, 2010; (10): 32) | [13] | Li W, Jin T, Hu Z Q. Acta Metall Sin, 2008; 44: 1474 | [13] | (李文, 金涛, 胡壮麒. 金属学报, 2008; 44: 1474) | [14] | Liu J D, Jin T, Zhao N R, Wang J H, Liu J L, Sun X F.Rare Met Mater Eng, 2007; 36: 332 | [14] | (刘纪德, 金涛, 赵乃仁, 王金辉, 刘金来, 孙晓峰. 稀有金属材料与工程, 2007; 36: 332) | [15] | Jalilian F, Jahazi M, Drew R.Mater Sci Eng, 2006; A423: 269 | [16] | Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2008; 461: 641 | [17] | Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2009; 469: 270 | [18] | Pouranvari M, Ekrami A, Kokabi A H.Mater Sci Eng, 2013; A568: 76 | [19] | Pouranvari M, Ekrami A, Kokabi A H.J Alloys Compd, 2013; 563: 143 | [20] | Zheng Y R, Ruan Z C.Acta Metall Sin, 1990; 26: B119 | [20] | (郑运荣, 阮中慈. 金属学报, 1990; 26: B119) | [21] | Neumeier S, Dinkel M, Pyczak F, G?ken M.Mater Sci Eng, 2011;A528: 815 | [22] | Dinkel M K, Heinz P, Pyczak F, Volek A, Ott M, Affeldt E, Singer R F.In: Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S, Woodard S R eds., Proc Int Symp on Superalloys, Warrendale, PA, USA: TMS, 2008: 211 | [23] | Ruan Z C, Wang S C, Zheng Y R.Scr Mater, 1996; 34: 163 | [24] | Kvasnitskij V V, Kostin A M, Vorob'ev A N, Kulik S G, Nikolaenko V P.Avtom Svarka, 1999; 11: 22 | [25] | Mao W, Li X H, Zhou Y, Ye L.Trans China Weld Inst, 2011; 32(4): 91 | [25] | (毛唯, 李晓红, 周媛, 叶雷. 焊接学报, 2011; 32(4): 91) | [26] | Cao J, Song X G, Zheng Z J, Feng J C.Trans China Weld Inst, 2011; 32(7): 13 | [26] | (曹健, 宋晓国, 郑祖金, 冯吉才. 焊接学报, 2011; 32(7): 13) | [27] | Pollock T M.Mater Sci Eng, 1995; B32: 255 | [28] | Cao L M, Li X H, Chen J Y, Xue M, Zhang Y.J Mater Eng, 2011; (10): 7 | [28] | (曹腊梅, 李相辉, 陈晶阳, 薛明, 张勇. 材料工程, 2011; (10): 7) | [29] | Chen J Y, Cao L M, Xue M, Liu L J.Rare Met, 2014; 33(2): 144 | [30] | Zheng Y R, Cai Y L, Ruan Z C, Ma S W.J Aeronaut Mater, 2006; 26(3): 25 | [30] | (郑运荣, 蔡玉林, 阮中慈, 马书伟. 航空材料学报, 2006; 26(3): 25) | [31] | Ma S W, Zheng Y R.Chin J Mater Res, 2009; 10: 149 | [31] | (马书伟, 郑运荣. 材料研究学报, 2009; 10: 149) | [32] | Wilson B, Hickman J, Fuchs G.JOM, 2003; 55(3): 35 | [33] | Zhou Y, Gale W, North T.Int Mater Rev, 1995; 40: 181 | [34] | Steuer S, Singer R.Metall Mater Trans, 2013; 44A: 2226 | [35] | Li T, Wang Q Y, Wang A Q, Wen Z X, Yue Z F.Key Eng Mater, 2005; 297: 1489 | [36] | Cranck J.The Mathematics of Diffusion. 2nd Ed., Oxford: Clarendon Press, 1975: 71 | [37] | Sheng N, Liu J, Jin T, Sun X F, Hu Z Q.Metall Mater Trans, 2013; 44A: 1793 | [38] | Karunaratne M, Reed R.Acta Mater, 2003; 51: 2905 | [39] | Bergner D.Cryst Res Technol, 1972; 7: 651 | [40] | Liu J D, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q.Mater Charact, 2011; 62: 545 | [41] | Wikstrom N, Ojo O, Chaturvedi M.Mater Sci Eng, 2006; A417: 299 | [42] | Lander J, Kern H, Beach A.J Appl Phys, 1952; 23: 1305 | [43] | Bridges P J, White C H, Durber G L R. The Nimonic Alloys. Bristol, Great Britain: Edward Arnold Ltd, 1974: 33 | [44] | Walston W S, Schaeffer J C, Murphy W H.In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, Woodford D A eds., Proc Int Symp on Superalloys, Warrendale, PA, USA: TMS, 1996: 9 | [45] | Yang C C, Rollett A, Mullins W.Scr Mater, 2001; 44: 2735 |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|