Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (9): 1049-1058    DOI: 10.11900/0412.1961.2015.00092
Current Issue | Archive | Adv Search |
EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND OXIDATION RESISTANCE OF Nb-Ti-Si BASE ULTRAHIGH-TEMPERATURE ALLOYS
Yuxiang ZENG1,Xiping GUO1(),Yanqiang QIAO1,Zhongyi NIE2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi′an 710072
2 Sinosteel Xi′an Heavy Machinery Co. Ltd., Xi′an 710077
Cite this article: 

Yuxiang ZENG,Xiping GUO,Yanqiang QIAO,Zhongyi NIE. EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND OXIDATION RESISTANCE OF Nb-Ti-Si BASE ULTRAHIGH-TEMPERATURE ALLOYS. Acta Metall Sin, 2015, 51(9): 1049-1058.

Download:  HTML  PDF(10943KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nb-Ti-Si base in situ composites which consist of Nb solid solution (Nbss) and silicides (a-Nb5Si3, b-Nb5Si3, g-Nb5Si3 and/or Nb3Si) phases, have shown great potential as alternative materials to Ni-based superalloys due to their high melting points (beyond 1700 ℃), good formability, low density (6.6~7.2 g/cm3) and high strength. However, a major hindrance to the applications of these alloys at elevated temperatures is their poor oxidation resistance. Alloying is an effective method to improve the integrated properties of the alloys, especially for the oxidation resistance. Up to now, many beneficial elements such as Ti, Al, Cr and Sn have been employed to ameliorate their oxidation resistance. Nevertheless, there is no systematic and comprehensive investigation on the effect of Zr contents on the microstructure and oxidation behavior of the alloys based on Nb-Ti-Si system. The aim of this work is to clarify the effects of Zr contents on phase selection, microstructure and high temperature oxidation resistance of Nb-Ti-Si based alloys in detail. The constituent phases, microstructure and composition of the alloys under as-cast state and after oxidation were investigated by OM, XRD, SEM and EDS. Thus, six Nb-Ti-Si base ultrahigh-temperature alloys with compositions of Nb-22Ti-15Si-5Cr-3Hf-3Al-xZr (x=0, 0.5, 1, 2, 4, 8, atomic fraction, %) were prepared by vacuum non-consumable arc-melting. The results show that the alloys with different Zr contents are mainly composed of Nbss and g-(Nb, X)5Si3 (X represents Ti, Hf, Cr and Zr). However, the addition of Zr has an obvious affect on the microstructure of Nb-Ti-Si base alloys. Both the sizes and amounts of primary g-(Nb, X)5Si3 increase with increase in Zr contents. Alloys with different Zr contents were oxidized at 1250 ℃ for 1~50 h, respectively. It is found that both adhesion and compactness of the scales are improved effectively by increase in Zr contents. The scales of alloys with higher Zr contents (x=4 and 8) after oxidation for 50 h show an obvious layered structure: the outmost layer is only composed of TiO2, the middle layer mainly consists of ZrO2, TiNb2O7 and TiO2, and the inner layer is mainly comprised of Si-rich oxides. The mass gain per unit area and the thickness of the scale after oxidation decrease with increase in Zr contents in the alloys, indicating that the addition of Zr can improve the oxidation resistance of the alloys significantly.

Key words:  Nb-Ti-Si base ultrahigh-temperature alloy      phase constituent      microstructure      high temperature oxidation     
Fund: Supported by National Natural Science Foundation of China (Nos.51371145, 51431003, U1435201 and 51401166)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00092     OR     https://www.ams.org.cn/EN/Y2015/V51/I9/1049

Fig.1  XRD spectra of the as-cast Nb-22Ti-15Si-5Cr-3Hf-3Al-xZr alloys (0Zr, 0.5Zr, 1Zr, 2Zr, 4Zr and 8Zr represent x=0, x=0.5, x=1, x=2, x=4 and x=8 alloys, respectively. Nbss is Nb solid solution)
Alloy Phase Nb Ti Si Cr Al Hf Zr
0Zr Nbss 69.4 19.8 1.7 5.1 3.0 1.0 -
g-(Nb, X)5Si3 41.5 17.3 33.9 1.2 2.2 3.9 -
2Zr Nbss 60.7 24.1 1.6 8.3 3.1 1.8 0.4
g-(Nb, X)5Si3 40.1 15.0 35.1 0.4 2.5 3.9 3.0
8Zr Nbss 66.8 20.4 1.5 4.5 3.1 1.5 2.2
g-(Nb, X)5Si3 25.9 16.0 34.9 0.7 3.0 4.0 15.5
Table 1  EDS analysis of chemical compositions of Nbss and g-(Nb, X)5Si3 in 0Zr, 2Zr and 8Zr alloys
Fig.2  BSE images of the as-cast 0Zr (a), 0.5Zr (b), 1Zr (c), 2Zr (d), 4Zr (e) and 8Zr (f) alloys (The plus symbol in Fig.2e indicates a three-phase eutectic zone with low melting point)
Fig.3  Isothermal oxidation kinetics curves of alloys with different Zr contents at 1250 ℃ (t—time)
Fig.4  Macro-morphologies of 0Zr (a), 0.5Zr (b), 1Zr (c), 2Zr (d), 4Zr (e) and 8Zr (f) alloys oxidized at 1250 ℃ for 50 h
Alloy Phase O Nb Ti Si Cr Al Hf Zr
0Zr Nbss 56.6 31.3 8.6 0.1 1.9 1.2 0.3 -
g-(Nb, X)5Si3 20.9 36.1 11.4 26.2 0.8 1.9 2.7 -
2Zr Nbss 53.0 32.5 10.2 0.1 2.1 1.3 0.3 0.5
g-(Nb, X)5Si3 19.3 31.2 14.5 26.9 1.2 2.0 3.4 1.5
8Zr Nbss 52.5 31.5 2.4 0.4 4.0 6.8 0.5 1.9
g-(Nb, X)5Si3 14.6 29.1 10.8 29.0 0.3 2.3 2.7 11.2
Table 2  EDS analysis of chemical composition of Nbss and g-(Nb, X)5Si3 in internal oxidation zones of 0Zr, 2Zr and 8Zr alloys oxidized at 1250 ℃ for 5 h in Fig.6
Fig.5  XRD spectra of scales of 0Zr, 2Zr and 8Zr alloys oxidized at 1250 ℃ for 1 h (a), 5 h (b) and 20 h (c)
Fig.6  BSE images of cross-sections of scales (a, c, e) and internal oxidation zones (b, d, f) of 0Zr (a, b), 2Zr (c, d) and 8Zr (e, f) alloys oxidized at 1250 ℃ for 5 h
Fig.7  XRD spectra of scales of 0Zr, 2Zr and 8Zr alloys oxidized at 1250 ℃ for 50 h
Alloy Point Phase O Nb Ti Si Al Cr Hf Zr
0Zr 1 Ti-rich oxide 73.7 9.0 9.4 1.5 1.4 3.9 1.1 -
2 Ti2Nb10O29 75.4 16.5 4.4 2.2 0.5 0.3 0.7 -
2Zr 3 Ti2Nb10O29 69.6 21.2 6.3 0.1 0.5 0.6 0.7 1.0
4 Si-rich oxide 74.3 9.8 2.8 11.6 0.3 0.2 0.5 0.5
5 Ti-rich oxide 67.4 9.8 12.6 0.5 2.1 5.4 1.3 0.9
8Zr 6 TiO2 71.7 8.1 11.6 0.1 1.0 5.0 0.6 1.9
7 ZrO2 72.6 6.2 1.0 5.7 0.9 0.2 2.8 10.6
8 TiNb2O7 72.4 15.4 9.5 0.1 0.4 0.1 0.5 1.6
9 Si-rich oxide 73.4 4.5 1.4 17.9 2.0 0.2 0.1 0.5
Table 3  EDS analysis of chemical compositions of phases in scales and internal oxidation zones of 0Zr, 2Zr and 8Zr alloys oxidized at 1250 ℃ for 50 h corresponding to points 1~9 in Fig.8
Fig.8  BSE images of cross-sections of scales of 0Zr (a, b), 2Zr (c, d) and 8Zr (e, f) alloys after oxidation at 1250 ℃ for 50 h at low (a, c, e) and high (b, d , f) magnification
[1] Bewlay B P, Jackson M R, Lipsitt H A. Metall Mater Trans, 1996; 27A: 3801
[2] Grammenos I, Tsakiropoulos P. Intermetallics, 2010; 18: 242
[3] Bewlay B P, Jackson M R, Zhao J C, Subramanian P R. Metall Mater Trans, 2003; 34A: 2043
[4] Wu C L, Zhou L Z, Guo J T. Acta Metall Sin, 2006; 42: 1061 (伍春兰, 周兰章, 郭建亭. 金属学报, 2006; 42: 1061)
[5] Kang Y W, Qu S Y, Song J X, Han Y F. Acta Metall Sin, 2008; 44: 593 (康永旺, 曲士昱, 宋尽霞, 韩雅芳. 金属学报, 2008; 44: 593)
[6] Jia L N, Gao M, Ge J R, Zheng L J, Sha J B, Zhang H. Acta Metall Sin, 2011; 47: 88 (贾丽娜, 高 明, 盖京茹, 郑立静, 沙江波, 张 虎. 金属学报, 2011; 47: 88)
[7] Wang J, Guo X P, Guo J M. Chin J Aeronaut, 2009; 22: 544
[8] Zhang S, Guo X P. Intermetallics, 2015; 57: 83
[9] Xiong B W, Cai C C, Wan H, Zheng Y H. J Alloys Compd, 2009; 486: 330
[10] Guo J M, Guo X P, Song S G. Acta Metall Sin, 2008; 44: 574 (郭金明, 郭喜平, 宋曙光. 金属学报, 2008; 44: 574)
[11] Zelenitsas K, Tsakiropoulos P. Mater Sci Eng, 2006; A416: 269
[12] Geng J, Tsakiropoulos P, Shao G S. Mater Sci Eng, 2006; A441: 26
[13] Li Z F, Tsakiropoulos P. Intermetallics, 2012; 26: 18
[14] Wang L G, Jia L N, Cui R J, Zheng L J, Zhang H. Chin J Aeronaut, 2012; 25: 292
[15] Grammenos I, Tsakiropoulos P. Intermetallics, 2011; 19: 1612
[16] Geng J, Tsakiropoulos P. Intermetallics, 2007; 15: 382
[17] Behrani V, Thom A J, Kramer M J, Akinc M. Intermetallics, 2006; 14: 24
[18] Vellios N, Tsakiropoulos P. Intermetallics, 2010; 18: 1729
[19] Vellios N, Tsakiropoulos P. Intermetallics, 2007; 15: 1518
[20] Yuan W H, Liang Z Y. Mater Des, 2011; 32: 4195
[21] Mousa M, Wanderka N, Timpel M, Singh S, Krüger M, Heilmaier M, Banhart J. Ultramicroscopy, 2011; 111: 706
[22] Gorr B, Wang L, Burk S, Azim M, Majumdar S, Christ H J, Mukherji D, R?sler J, Schliephake D, Heilmaier M. Intermetallics, 2014; 48: 34
[23] Yu Q H, Zhou C G, Zhang H Y, Zhao F. J Eur Ceram Soc, 2010; 30: 889
[24] Li X, Guo X P, Qiao Y Q. Oxid Met, 2015; 83: 253
[25] Li X, Guo X P. Acta Metall Sin, 2012; 48: 1394 (李 轩, 郭喜平. 金属学报, 2012; 48: 1394)
[26] Tian Y X, Guo J T, Sheng L Y, Cheng G M, Zhou L Z, He L L, Ye H Q. Intermetallics, 2008; 16: 807
[27] Li X F, Guo X P. Acta Metall Sin, 2013; 49: 853 (李小飞, 郭喜平. 金属学报, 2013; 49: 853)
[28] Liu A Q, Sun L, Li S S, Han Y F. J Rare Earth, 2007; 25: 474
[29] Lee D B, Woo S W. Intermetallics, 2005; 13: 169
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!