1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Cold Rolling Silicon Plant, Anshan Steel Co., Ltd., Anshan 114021
Cite this article:
Yongjun FU, Ping YANG, Qiwu JIANG, Xiaoda WANG, Wenxu JIN. EVOLUTION OF TEXTURES OF COLUMNAR GRAINS IN Fe-3%Si ELECTRICAL STEEL SLABS. Acta Metall Sin, 2015, 51(5): 545-552.
Different numbers of columnar grains in a Fe-3%Si electrical steel slabs with their major axes being parallel to the rolling direction were used for cold rolling and recrystallization annealing. The evolution of the texture of columnar grains was followed by EBSD technique. The results show that, in the case of single columnar grain with cube orientation, cube texture is adverse to be retained in condition of primary cold rolling with high reduction and recrystallization annealing, while strong cube texture can form after secondary cold rolling with low reduction and recrystallization annealing. But the cube texture hinders strongly the abnormal growth of Goss grains. For the sample containing two columnar grains with Goss and cube orientation, the initial Goss orientation rotates to {111}<112> orientation quickly and cube texture is retained effectively during cold rolling by high reduction. The interaction between the Goss and cube columnar grains is not strong. For the multi-columnar grains with different orientations, the grain boundaries between columnar grains promote g-texture and weaken the cube texture, which is in favor of abnormal growth of Goss grains.
Fig.1 EBSD orientation maps (a1~c1) and {001} pole figures (a2~c2) of initial columnar grains in three samples (ND—normal direction, RD—rolling direction, TD—transverse direction)
Fig.4 EBSD orientation maps (a1~c1) and ODF sections (j2=45°) (a2~c2) of samples after cold rolling with 82% reduction and recrystallization annealing (j1, f and j2 are orientation Euler angles)
Fig.8 Variation trend to the content of grains with main orientations for single columnar grain (1—columnar, 2—primary cold rolling, 3—recrystallization annealing, 4—secondary cold rolling, 5—recrystallization annealing, 6—secondary recrystallization annealing)
Fig.9 Variation trend to the content of grains with main orientations for double columnar grains
Fig.10 Variation trend to the content of grains with main orientations for multi-columnar grains
[1]
Walter J L, Hibbard W R. Trans Met Soc AIME, 1958; 212: 731
[2]
Park J Y, Han K S, Woo J S, Chang S K, Rajmohan N, Szpunar J A. Acta Mater, 2002; 50: 1825
[3]
Sakai T, Shiozaki M, Takashina K. J Appl Phys, 1979; 50: 2369
[4]
Obara T, Takeuchi H, Takamiya T, Kan T. J Mater Eng Perform, 1993; 2: 205
[5]
Takashima M, Obara T, Kan T. J Mater Eng Perform, 1993; 2: 249
[6]
Dong H, Zhao Y, Yu X J, Lian F Z. J Iron Steel Res Int, 2009; 16: 86
[7]
Littmann M F. Metall Trans, 1975; 6A: 1041
[8]
Liu H T, Liu Z Y, Cao G M, Li C G, Wang G D. J Magn Magn Mater, 2011; 323: 2648
[9]
Cheng L, Yang P, Fang Y P, Mao W M. J Magn Magn Mater, 2012; 324: 4068
[10]
Heo N H, Chai K H, Na J G. Acta Mater, 2000; 48: 2901
[11]
Park H K, Kim S J, Han H N, Han C H, Hwang N M. Mater Trans, 2010; 51: 1547
[12]
Xiang L, Yue E B, Fan D D, Qiu S T, Zhao P. J Iron Steel Res Int, 2008; 15: 88
[13]
Park J T, Szpunar J A. Acta Mater, 2003; 51: 3037
[14]
Li C S, Yang H, Wang Y F, Yu Y M. J Iron Steel Res Int, 2010; 17: 46
[15]
Park S Y, Lim K M, Namkung J, Kim M C, Park C G. Scr Mater, 2006; 54: 621
[16]
Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48 : 784 (张 宁, 杨 平, 毛卫民. 金属学报, 2012; 48 : 784)
[17]
Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48: 308 (张 宁, 杨 平, 毛卫民. 金属学报, 2012; 48: 308)
[18]
Shao Y Y, Yang P, Mao W M. Acta Metall Sin, 2014; 50: 259 (邵媛媛, 杨 平, 毛卫民. 金属学报, 2014; 50: 259)