Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (5): 545-552    DOI: 10.11900/0412.1961.2014.00573
Current Issue | Archive | Adv Search |
EVOLUTION OF TEXTURES OF COLUMNAR GRAINS IN Fe-3%Si ELECTRICAL STEEL SLABS
Yongjun FU1,2,Ping YANG1(),Qiwu JIANG2,Xiaoda WANG2,Wenxu JIN2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Cold Rolling Silicon Plant, Anshan Steel Co., Ltd., Anshan 114021
Cite this article: 

Yongjun FU, Ping YANG, Qiwu JIANG, Xiaoda WANG, Wenxu JIN. EVOLUTION OF TEXTURES OF COLUMNAR GRAINS IN Fe-3%Si ELECTRICAL STEEL SLABS. Acta Metall Sin, 2015, 51(5): 545-552.

Download:  HTML  PDF(8290KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Different numbers of columnar grains in a Fe-3%Si electrical steel slabs with their major axes being parallel to the rolling direction were used for cold rolling and recrystallization annealing. The evolution of the texture of columnar grains was followed by EBSD technique. The results show that, in the case of single columnar grain with cube orientation, cube texture is adverse to be retained in condition of primary cold rolling with high reduction and recrystallization annealing, while strong cube texture can form after secondary cold rolling with low reduction and recrystallization annealing. But the cube texture hinders strongly the abnormal growth of Goss grains. For the sample containing two columnar grains with Goss and cube orientation, the initial Goss orientation rotates to {111}<112> orientation quickly and cube texture is retained effectively during cold rolling by high reduction. The interaction between the Goss and cube columnar grains is not strong. For the multi-columnar grains with different orientations, the grain boundaries between columnar grains promote g-texture and weaken the cube texture, which is in favor of abnormal growth of Goss grains.

Key words:  columnar grain      Fe-3%Si electrical steel      cold deformation      recrystallization annealing      texture     
Received:  22 October 2014     
Fund: National Natural Science Foundation of China (No.51071024)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00573     OR     https://www.ams.org.cn/EN/Y2015/V51/I5/545

Fig.1  EBSD orientation maps (a1~c1) and {001} pole figures (a2~c2) of initial columnar grains in three samples (ND—normal direction, RD—rolling direction, TD—transverse direction)

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.2  EBSD orientation maps (a1~c1) and {001} pole figures (a2~c2) of primary cold rolled samples subjected to 82% reduction in the surface

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.3  EBSD orientation maps of primary cold rolled samples subjected to 82% reduction in the center

(a) double columnar grains (b) multi-columnar grains

Fig.4  EBSD orientation maps (a1~c1) and ODF sections (j2=45°) (a2~c2) of samples after cold rolling with 82% reduction and recrystallization annealing (j1, f and j2 are orientation Euler angles)

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.5  EBSD orientation maps (a1~c1) and ODF sections (j2=45°) (a2~c2) of the secondary cold rolled samples subjected to 47% reduction

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.6  EBSD orientation maps (a1~c1) and ODF sections (j2=45°) (a2~c2) of samples after cold rolling with 47% reduction and recrystallization annealing

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.7  EBSD orientation maps (a1~c1) and {001} pole figures (a2~c2) of high temperature annealed samples

(a1, a2) single columnar grain (b1, b2) double columnar grains (c1, c2) multi-columnar grains

Fig.8  Variation trend to the content of grains with main orientations for single columnar grain (1—columnar, 2—primary cold rolling, 3—recrystallization annealing, 4—secondary cold rolling, 5—recrystallization annealing, 6—secondary recrystallization annealing)
Fig.9  Variation trend to the content of grains with main orientations for double columnar grains
Fig.10  Variation trend to the content of grains with main orientations for multi-columnar grains
[1] Walter J L, Hibbard W R. Trans Met Soc AIME, 1958; 212: 731
[2] Park J Y, Han K S, Woo J S, Chang S K, Rajmohan N, Szpunar J A. Acta Mater, 2002; 50: 1825
[3] Sakai T, Shiozaki M, Takashina K. J Appl Phys, 1979; 50: 2369
[4] Obara T, Takeuchi H, Takamiya T, Kan T. J Mater Eng Perform, 1993; 2: 205
[5] Takashima M, Obara T, Kan T. J Mater Eng Perform, 1993; 2: 249
[6] Dong H, Zhao Y, Yu X J, Lian F Z. J Iron Steel Res Int, 2009; 16: 86
[7] Littmann M F. Metall Trans, 1975; 6A: 1041
[8] Liu H T, Liu Z Y, Cao G M, Li C G, Wang G D. J Magn Magn Mater, 2011; 323: 2648
[9] Cheng L, Yang P, Fang Y P, Mao W M. J Magn Magn Mater, 2012; 324: 4068
[10] Heo N H, Chai K H, Na J G. Acta Mater, 2000; 48: 2901
[11] Park H K, Kim S J, Han H N, Han C H, Hwang N M. Mater Trans, 2010; 51: 1547
[12] Xiang L, Yue E B, Fan D D, Qiu S T, Zhao P. J Iron Steel Res Int, 2008; 15: 88
[13] Park J T, Szpunar J A. Acta Mater, 2003; 51: 3037
[14] Li C S, Yang H, Wang Y F, Yu Y M. J Iron Steel Res Int, 2010; 17: 46
[15] Park S Y, Lim K M, Namkung J, Kim M C, Park C G. Scr Mater, 2006; 54: 621
[16] Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48 : 784 (张 宁, 杨 平, 毛卫民. 金属学报, 2012; 48 : 784)
[17] Zhang N, Yang P, Mao W M. Acta Metall Sin, 2012; 48: 308 (张 宁, 杨 平, 毛卫民. 金属学报, 2012; 48: 308)
[18] Shao Y Y, Yang P, Mao W M. Acta Metall Sin, 2014; 50: 259 (邵媛媛, 杨 平, 毛卫民. 金属学报, 2014; 50: 259)
[19] Walter J L, Koch E F. Acta Metall, 1963; 11: 923
[20] Walter J L, Koch E F. Acta Metall, 1962; 10: 1059
[21] Dunn C G. Acta Met, 1954; 2: 173
[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[4] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[5] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[6] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[7] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[8] XU Zhanyi, SHA Yuhui, ZHANG Fang, ZHANG Huabing, LI Guobao, CHU Shuangjie, ZUO Liang. Orientation Selection Behavior During Secondary Recrystallization in Grain-Oriented Silicon Steel[J]. 金属学报, 2020, 56(8): 1067-1074.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DU Zijie, LI Wenyuan, LIU Jianrong, SUO Hongbo, WANG Qingjiang. Study on the Uniformity of Structure and Mechanical Properties of TC4-DT Alloy Deposited by CMT Process[J]. 金属学报, 2020, 56(12): 1667-1680.
[12] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[13] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[14] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[15] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
No Suggested Reading articles found!