Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (5): 537-544    DOI: 10.11900/0412.1961.2014.00566
Current Issue | Archive | Adv Search |
EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL
Xiaolin LI,Zhaodong WANG()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL. Acta Metall Sin, 2015, 51(5): 537-544.

Download:  HTML  PDF(5898KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In accordance with the demand for reduced fuel consumption and CO2 emissions in automobiles, and with the increasing high demand for vehicle lightweight and safety, advanced high- strength steels (AHSS) have received more attentions in recent years. The recent trend for the development of AHSS has been concentrated on the complex microstructure with multiphase. Quenching and partitioning (Q&P) steel with carbon-enriched austenite within martensitic matrix as a competitive candidate of AHSS have been developed widely. It has high strength and good ductility depending on the multiphase microstructure. Therefore, the relationship of the mechanical property and the microstructure of the Q&P steels should be studied in detail. In the present work, the microstructure characterization and mechanical properties of the experimental steel treated by one step Q&P process were investigated, as well as the direct quenching and Q&T processes. The results show that the microstructure of the steel treated by one step Q&P process mainly consists of lath martensite, plate martensite and residual austenite films between martensite laths. With a increase in the holding time, the fraction of the plate martensite firstly increases and then reduces, while that of the retained austenite firstly increases and then becomes constant. The combination of strength and elongation of the steel processed by one step Q&P is much better than the one processed by the other two, that is to say, the former one can possess good strength and ductility at the same time. The product of tensile strength and elongation, the tensile strength and the elongation can achieve 21774.2 MPa·%, 1442 MPa and 15.1%, respectively. Along with the holding time increasing, tensile strength decreases but elongation rises and finally be stable.

Key words:  high strength steel      Q&P process      martensite      retained austenite      product of tensile strength and elongation     
Received:  15 October 2014     
Fund: National Natural Science Foundation of China (Nos.51034009 and 51234002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00566     OR     https://www.ams.org.cn/EN/Y2015/V51/I5/537

Sample Process Austenization T (t) Quenchant Quenching T (t) Tempering T (t)
No.1 Direct quenching 950 ℃ (3 min) Saturated NaCl solution RT -
No.2 Direct quenching 950 ℃ (3 min) Water RT -
No.3 Direct quenching 950 ℃ (3 min) Air RT -
No.4 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (2 min) -
No.5 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (5 min) -
No.6 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (10 min) -
No.7 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (15 min) -
No.8 One step Q&P 950 ℃ (3 min) Molten NaNO2 300 ℃ (30 min) -
No.9 Q&T 950 ℃ (3 min) Saturated NaCl solution RT 300 ℃ (60 min)
No.10 Q&T 950 ℃ (3 min) Water RT 300 ℃ (60 min)
No.11 Q&T 950 ℃ (3 min) Air RT 300 ℃ (60 min)
Table 1  Heat treatment parameters for different samples
Fig.1  OM images of samples No.4 (a), No.5 (b), No.6 (c), No.7 (d), No.8 (e) and No.2 (f)
Fig.2  Dilatation curve of sample No.8 (Δl—expansion increment, l0—original length, area 1—quenching process, areas 2 and 3—isothermal processes)
Fig.3  TEM images and corresponding SAED patterns of the martensite (insets) of samples No.1 (a), No.2 (b) and No.3 (c)
Fig.4  Bright field image (a) and corresponding SAED pattern (b) of the twin martensite, bright (c) and dark (d) field images and corresponding SAED pattern (e) of the lath martensite and retained austensite of sample No.6
Fig.5  Bright (a) and dark (b) field images and corresponding SAED pattern (c) of sample No.8
Fig.6  XRD spectra of different samples
Sample Rm / MPa δ / % Rmδ / (MPa%)
No.1 1637 10.8 17679.6
No.2 1611 11.2 18043.2
No.3 1429 13.9 19963.1
No.4 1485 14.3 21236.5
No.5 1442 15.1 21774.2
No.6 1369 15.8 21630.2
No.7 1325 16.3 21605.5
No.8 1275 16.8 21420.0
No.9 1498 12.1 18125.8
No.10 1469 12.7 18656.3
No.11 1390 14.0 19460.0
Table 2  Mechanical properties of different samples
[1] Senuma T. ISIJ Int, 2001; 41: 520
[2] Hu J, Du L X, Wang J J. Mater Sci Eng, 2012; A554: 79
[3] Guo J, Shang C J, Yang S W, Guo H, Wang X M, He X L. Mater Des, 2009; 30: 129
[4] Manohar P A, Chandra T, Killmore C R. ISIJ Int, 1996; 36: 1486
[5] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2611
[6] Matlock D K, Brautigam V E, Speer J G. Mater Sci Forum, 2003; 426-432: 1089
[7] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2008; 40A: 46
[8] Liu H P, Lu X W, Jin X J, Dong H, Shi J. Scr Mater, 2011; 64: 749
[9] Li H Y, Lu X W, Li W J, Jin X J. Metall Mater Trans, 2010; 41A: 1284
[10] De Moor E, Lacroixs S, Clarke A J, Penning J, Speer J G. Metall Mater Trans, 2008; 39A: 2586
[11] Bagliani E P, Santofimia M J, Zhao L, Sietsma J, Anelli E. Mater Sci Eng, 2013; A559: 486
[12] Wang C Y. PhD Dissertation. Central Iron & Steel Research Institute, Beijing, 2010 (王存宇. 钢铁研究总院博士学位论文, 北京, 2010)
[13] Wang C Y, Shi J, Cao W Q, Hui W J. Acta Metall Sin, 2011; 47: 720 (王存宇, 时 捷, 曹文全, 惠卫军. 金属学报, 2011; 47: 720)
[14] Wang C Y, Shi J, Cao W Q, Dong H. Mater Sci Eng, 2010; A527: 3442
[15] Santofimia M J, Petrov R H, Zhao L, Sietsma J. Mater Charact, 2014; 92: 91
[16] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; 40A: 46
[17] Santofimia M J, Speer J G, Clarke A J, Zhao L, Sietsma J. Acta Mater, 2009; 57: 4548
[18] Cui Z Q,Qin Y C. Metallographic and Thermal Treatment. 2nd Ed., Bejing: China Machine Press, 2007: 250, 43 (崔忠圻,覃耀春. 金属学与热处理. 第二版, 北京: 机械工业出版业, 2007: 250, 43)
[19] Sun J, Yun H, Wang S Y. Mater Sci Eng, 2014; A596: 89
[20] Yan S, Liu X H, Liu W J. Mater Sci Eng, 2015; A620: 58
[21] Hana J, Bohuslav M, Marin F W, Daniel K. J Alloys Compd, 2014; 615: 163
[22] Li Z, Wu D. ISIJ Int, 2006; 46: 121
[23] Sugimoto K I, Usui N, Kobayashi M, Hashimota S I. ISIJ Int, 1992; 32: 1311
[24] Kung C Y, Rayment J J. Mater Trans, 1982; 13A: 328
[25] Pan J S,Tong J M,Tian M B. Material Science Foundation. Beijing: Tsinghua University Press, 2011: 462 (潘金生,仝健民,田民波. 材料科学基础. 北京: 清华大学出版社, 2011: 462)
[26] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 2009; 40A: 46
[27] Zhong N, Wang X, Rong Y. J Mater Sci Technol, 2006; 22: 751
[28] Guo K X,Ye H Q,Wu Y K. Application of Electron Diffraction Pattern in Crystallography. Beijing: Science Press, 1983: 309 (郭可信,叶恒强,吴玉琨. 电子衍射图在晶体学中的应用. 北京: 科学出版社, 1983: 309)
[29] Yan S, Liu X H, Liu W J. Acta Metall Sin, 2013; 49: 917 (闫 述, 刘相华, 刘伟杰. 金属学报, 2013; 49: 917)
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[5] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[6] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[7] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[8] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[9] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[10] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[11] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[12] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[13] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[14] LU Bin, CHEN Furong, ZHI Jianguo, GENG Ruming. Enhanced Welding Properties of High Strength Steel via Rare Earth Oxide Metallurgy Technology[J]. 金属学报, 2020, 56(9): 1206-1216.
[15] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
No Suggested Reading articles found!