Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 341-348    DOI: 10.11900/0412.1961.2014.00575
Current Issue | Archive | Adv Search |
MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF TC1 ALLOY FABRICATED BY PLASMA ARC COLD HEARTH MELTING DURING ROLLING PROCESS
LIU Mengying1, CHANG Hai1(), XU Feng2, XU Zhengfang2, YANG Zhao2, WANG Ning2, GAN Weimin3, FENG Qiang1,4()
1 National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083
2 Baosteel Special Metals Co., Ltd., Shanghai 200940
3 Helmholtz-Zentrum Geesthacht, Out Station at FRM2, Garching, Germany, 85747
4 State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

LIU Mengying, CHANG Hai, XU Feng, XU Zhengfang, YANG Zhao, WANG Ning, GAN Weimin, FENG Qiang. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF TC1 ALLOY FABRICATED BY PLASMA ARC COLD HEARTH MELTING DURING ROLLING PROCESS. Acta Metall Sin, 2015, 51(3): 341-348.

Download:  HTML  PDF(12869KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Plasma arc cold hearth melting (PAM) is an effective technology to produce high purity titanium alloy ingots which are widely used in aeronautic and astronautic industries. To date, the development of PAM in our country is still at initial stage. It is necessary to investigate the melting parameters of PAM and the following thermal mechanical processing of the ingots fabricated by PAM. In this study, the TC1 alloy ingots casted by PAM were cogged at b transus temperature and then rolled by unidirectional rolling and cross rolling in the a+b phase field. The typical widmanstatten structure of cast-ingots turned to transformed b morphology after cogging at b transus temperature in which the a phases forms in smaller colonies of laths. After the unidirectinal rolling in the a+b phase field, the a colonies were distorted and the a laths re-arranged along the rolling direction, while they had weaker directivity after cross rolling. The sheets rolled by both unidirectional and cross rolling showed typical prismatic texture. After annealing treatment below the b transus temperature, the a phases turned to equiaxial morphology. The ambient yield strength of the sheet in transverse direction was significantly higher than in rolling direction, which could be attributed to the strong prismatic texture introduced by hot rolling process.

Key words:  plasma arc cold hearth melting (PAM)      TC1 alloy      hot rolling      microstructure      texture      mechanical properties     
ZTFLH:  TG146.23  
  TG113.25  
Fund: Supported by National Natural Science Foundation of China (No.51201006) and Programme of Introducing Talents of Discipline to Universities (No.B12012)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00575     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/341

Fig.1  Schematic of tensile testing specimen (unit: mm) (a) and important directions on the rolled sheet (b)
Fig.2  Low (a) and high (b) magnified typical OM images of TC1 ingot fabricated by plasma arc cold hearth melting (PAM)
Fig.3  Low (a) and high (b) magnified typical OM images of TC1 sheet on the RD-TD plane after breakdown rolling
Fig.4  Typical OM images of TC1 sheets on the RD-TD (a, c) and RD-ND (b, d) planes after unidirectional rolling (UR) (a, b) and cross rolling (CR) (c, d) (Insets show the high magnified images)
Fig.5  Typical OM images of TC1 sheets on the RD-TD (a, c) and RD-ND (b, d) planes after UR (a, b) and CR (c, d) and then annealed at 750 ℃ for 30 min with cooling in air
Fig.6  {0002} (a) , {1010} (b) and {1120} (c) pole figures of a phase in TC1 ingot after breakdown rolling
Fig.7  {0002} (a, d), {1010} (b, e) and {1120} (c, f) pole figures of a sphase after UR (a~c) and CR (d~f)
Rolling mode Sample position Yield strength
MPa
Ultimate strength
MPa
Elongation
%
UR RD 621±3 733±3 18.1±5.2
TD 747±9 755±8 15.6±0.1
CR RD 661±18 763±8 17.4±3.0
TD 745±6 761±5 21.1±4.3
Table 1  Ambient tensile properties of TC1 sheets along RD and TD directions after UR and CR
Rolling mode Sample position Yield strength
MPa
Ultimate strength
MPa
Elongation
%
UR RD 561±4 671±10 31.7±0.2
TD 655±8 673±9 31.3±0.4
CR RD 524±24 667±2 26.1±1.0
TD 642±9 686±3 25.4±0.1
Table 2  Ambient tensile properties of TC1 sheets along RD and TD directions after UR and CR and then annealed at 750 ℃ for 30 min with cooling in air
[1] Mo W. Titanium. Beijing: Metallugical Industry Press, 2008: 330
(莫 畏. 钛. 北京: 冶金工业出版社, 2008: 330 )
[2] Ma J M,He J Y,Pang K C. Ingot and Forging of Titanium. Beijing: Metallugical Industry Press, 2012: 82
(马济民,贺金宇,庞克昌. 钛铸锭和锻造. 北京: 冶金工业出版社, 2012: 82)
[3] Chinnis W R. Titanium 1990: Products and Application, 1990; 2: 830
[4] Tian Y X, Li S J, Hao Y L, Yang R. Acta Metall Sin, 2012; 48: 837
(田宇兴, 李述军, 郝玉琳, 杨 锐. 金属学报, 2012; 48: 837)
[5] Zhang Z Q, Dong L M, Yang Y, Guan S X, Liu Y Y, Yang R. Acta Metall Sin, 2011; 47: 1257
(张志强, 董利民, 杨 洋, 关少轩, 刘羽寅, 杨 锐. 金属学报, 2011; 47: 1257)
[6] Wang T, Guo H, Wang Y, Yao Z. Mater Sci Eng, 2010; A528: 736
[7] Ding R, Guo Z X, Wilson A. Mater Sci Eng, 2002; A327: 233
[8] Lütjering G. Mater Sci Eng, 1998; A243: 32
[9] Roy S, Karanth S, Suwas S. Metall Mater Trans, 2013; 44A: 3322
[10] Gurao N P, Ali A A, Suwas S. Mater Sci Eng, 2009; A504: 24
[11] You L, Song X P. Acta Metall Sin, 2008; 44: 1310
(尤 力, 宋西平. 金属学报, 2008; 44: 1310)
[12] Qin G H, Wang W B, Ji B, Wu Y Y. Chin J Nonferrous Met, 2010; 20: 877
(秦桂红, 王万波, 计 波, 吴英彦. 中国有色金属学报, 2010; 20: 877)
[13] Song J H, Hong K J, Ha T K, Jeong H T. Mater Sci Eng, 2007; A449-451: 144
[14] Zheng J M, Lei R Q. Titanium Industry Progress, 2008; 25(4): 27
(郑建民, 雷让歧. 钛工业进展, 2008; 25(4): 27)
[15] Boehlert C J. Mater Sci Eng, 2000; A279: 118
[16] Mao W M,Yang P,Chen L. Analysis Principle of Texture and Testing Technique . Beijing: Metallugical Industry Press, 2008: 15
(毛卫民,杨 平,陈 冷.材料织构分析原理与检测技术. 北京: 冶金工业出版社, 2008: 15)
[17] Philippe M J, Esling C, Hocheid B. Textures Microstruct, 1988; 7: 265
[18] Salem A A, Glavicic M G, Semiatin S L. Mater Sci Eng, 2008; A496: 169
[19] Warwick J L W, Jones N G, Bantounas I, Preuss M, Dye D. Acta Mater, 2013; 61: 1603
[20] Singh A K, Schwarzer R A. Mater Sci Eng, 2001; A307: 151
[21] Gey N, Humbert M, Philippe M J, Combres Y. Mater Sci Eng, 1996; A219: 80
[22] Russell A M, Chumbley L S, Ellis T W, Laabs F C, Norris B, Donizetti G E. J Mater Sci, 1995; 30: 4249
[23] Zhu Z S, Gu J L, Chen N P. Chin J Nonferrous Met, 1995; 5: 83
(朱知寿, 顾家琳, 陈南平. 中国有色金属学报, 1995; 5: 83)
[24] Zhu Z S, Gu J L, Chen N P, Yang Z S. Mater Mech Eng, 1994; 18(6): 23
(朱知寿, 顾家琳, 陈南平, 杨照苏. 机械工程材料, 1994; 18(6): 23)
[25] Lin P, Feng A, Yuan S, Li G, Shen J. Mater Sci Eng, 2013; A563: 16
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!