Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 832-838    DOI: 10.3724/SP.J.1037.2013.00746
Current Issue | Archive | Adv Search |
FORMATION AND EVOLUTION OF PRECIPITATE IN TiAl ALLOY WITH ADDITION OF INTERSTITIAL CARBON ATOM
ZHOU Huan, ZHANG Tiebang(), WU Zeen, HU Rui, KOU Hongchao, LI Jinshan
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

ZHOU Huan, ZHANG Tiebang, WU Zeen, HU Rui, KOU Hongchao, LI Jinshan. FORMATION AND EVOLUTION OF PRECIPITATE IN TiAl ALLOY WITH ADDITION OF INTERSTITIAL CARBON ATOM. Acta Metall Sin, 2014, 50(7): 832-838.

Download:  HTML  PDF(5840KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As promising light-weight high-temperature materials, g-TiAl base alloys are considered as prospective candidates for automobile and aerospace application due to their high specific yield strength. Adding Nb to TiAl alloys increases the liquidus temperature and results in improvents of creep resistance, high temperature strength and oxidation resistance. High Nb-containing TiAl alloys have attracted much attention during past decades. With the addition of carbon in Ti-46Al-8Nb-xC alloys (x=0, 0.7, 1.4, 2.5, atomic fraction, %), the formation of precipitates, the orientation relationship between precipitates and the TiAl matrix and the evolution of the precipitates during heat treatments have been investigated in this work by XRD, SEM and TEM. The results show that lath-shaped precipitates of Ti2AlC can be formed during the preparation of ingots with the addition of 1.4% and 2.5% of C. With good thermal stability, the size, amount and distribution of Ti2AlC precipitates remain almost stable during the aging process. Needle-shaped precipitates of Ti3AlC are formed in the aged alloys with 0.7%, 1.4% and 2.5% of C. And the precipitates are preferentially formed in g grains. The orientation relationship between Ti3AlC precipitates and g phase is found to be {100}Ti3AlC //{100}γ and <001> Ti3AlC //<001>γ. Meanwhile, the precipitation behavior and morphology of Ti3AlC are also discussed. Ti3AlC precipitates grow slightly after prolonged aging, while the amount of the precipitates remains small. With a higher aging temperature, the size of Ti3AlC precipitates increases significantly and an increasing amount of the precipitates is observed.

Key words:  interstitial atom      high Nb-containing TiAl alloy      carbide      evolution      orientation relationship     
ZTFLH:  TG146.2  
Fund: Supported by National Natural Science Foundation of China (Nos.51001086 and 51371144) and National Basic Research Program of China (No.2011CB605503)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00746     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/832

Fig.1  XRD spectra of Ti-46Al-8Nb-xC (x=0, 0.7, 1.4, 2.5) alloys after solution treatment
Fig.2  SEM images of Ti-46Al-8Nb-xC alloys after solution treatment at 1380 ℃ for 1 h

(a) x=0 (b) x=0.7 (c) x=1.4 (d) x=2.5

Fig.3  SEM images of Ti-46Al-8Nb-xC alloys aged at 900 ℃ for 6 h

(a) x=0.7 (c) x=1.4 (d) x=2.5

Fig.4  Dark field image (a) and the corresponding SAED pattern (b) of Ti3AlC in Ti-46Al-8Nb-1.4C alloy aged at 900 ℃ for 6 h
Fig.5  XRD spectra of Ti-46Al-8Nb-1.4C alloy aged at 900 ℃ for different times
Fig.6  SEM images of Ti-46Al-8Nb-1.4C alloy aged at 900 ℃ for 1 h (a), 3 h (b), 12 h (c) and 24 h (d) (The insets show the enlarged views corresponding to the rectangle areas)
Fig.7  SEM images of Ti-46Al-8Nb-1.4C alloy aged for 12 h at 800 ℃ (a) and 1000 ℃ (b)
[1] Loria E A. Intermetallics, 2000; 8: 1339
[2] Kothari K, Radhakrishnan R, Wereley N M. Prog Aerosp Sci, 2012; 55: 1
[3] Noda T. Intermetallics, 1998; 6: 709
[4] Dimiduk D M. Mater Sci Eng, 1999; A263: 281
[5] Yu H C, Dong C L, Jiao Z H, Kong F T, Chen Y Y, Su Y J. Acta Metall Sin, 2013; 49: 1311
(于慧臣, 董成利, 焦泽辉, 孔凡涛, 陈玉勇, 苏勇君. 金属学报, 2013; 49: 1311)
[6] Appel F, Oehring M, Wagner R. Intermetallics, 2000; 8: 1283
[7] Gerling R, Schimansky F P, Stark A, Bartels A, Kestler H, Cha L, Scheu C, Clemens H. Intermetallics, 2008; 16: 689
[8] Perdrix F, Trichet M F, Bonnentien J L, Cornet M, Bigot J. Intermetallics, 2001; 9: 807
[9] Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Intermetallics, 2008; 16: 969
[10] Clemens H, Mayer S. Adv Eng Mater, 2013; 15: 191
[11] Wu Z E, Hu R, Zhang T B, Zhou H, Kou H C, Li J S. Acta Metall Sin, 2013; 49: 1381
(吴泽恩, 胡 锐, 张铁邦, 周 欢, 寇宏超, 李金山. 金属学报, 2013; 49: 1381)
[12] Dong L M, Cui Y Y, Yang R. Acta Metall Sin, 2002; 38: 643
(董利民, 崔玉友, 杨 锐. 金属学报, 2002; 38: 643)
[13] Scheu C, Stergar E, Schober M, Cha L, Clemens H, Bartels A, Schimansky F P, Cerezo A. Acta Mater, 2009; 57: 1504
[14] Christoph U, Appel F, Wagner R. Mater Sci Eng, 1997; A239: 39
[15] Chen S, Beaven P A, Wagner R. Scr Metall Mater, 1992; 26: 1205
[16] Tian W H, Nemoto M. Intermetallics, 1997; 5: 237
[17] Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: Wiley-VCH, 2011: 282
[18] Gabrisch H, Stark A, Schimansky F P, Wang L, Schell N, Lorenz U, Pyczak F. Intermetallics, 2013; 33: 44
[19] Li S J, Wang Y L, Lin J P, Lin Z, Chen G L. Rare Met Mater Eng, 2004; 33: 144
(李书江, 王艳丽, 林均品, 林 志, 陈国良. 稀有金属材料与工程, 2004; 33: 144)
[20] Pietzka M A, Schuster J C. J Phase Equilib, 1994; 15: 392
[21] Cam G, Flower H M, West D R F. Mater Sci Technol, 1991; 7: 505
[22] Kurz W,Fisher D J,translated by Li J G,Hu Q D. Fundamentals of Solidification. 4th Ed., Beijing: Higher Education Press, 2010: 18
(Kurz W,Fisher D J 著,李建国,胡侨丹 译. 凝固原理. 第四版, 北京: 高等教育出版社, 2010: 18)
[23] Wei Z, Wang H, Jin Y, Zhang H, Zeng S. J Mater Sci, 2002; 37: 1809
[24] Chen G L, Xu X J, Teng Z K, Wang Y L, Lin J P. Intermetallics, 2007; 15: 625
[25] Chen Z, Su X, Xiang Z, Nie Z. J Mater Sci Technol, 2012; 28: 453
[26] Xia Q F, Wang J N, Yang J, Wang Y. Intermetallics, 2001; 9: 361
[27] Wang P, Viswanathan G B, Vasudevan V K. Metall Trans, 1992; 23A: 690
[28] Menand A, Huguet A, Nerac-Partaix A. Acta Mater, 1996; 44: 4729
[29] Kanchana V. EPL-Europhys Lett, 2009; 87: 26006
[30] Tian W H, Sano T, Nemoto M. Philos Mag, 1993; 68A: 965
[31] Xu Z,Zhao L C. Metal-Solid Phase Transition Theory. Beijing: Science Press, 2004: 7
(徐 洲,赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 7)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[4] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[5] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[6] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[7] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[8] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[9] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[10] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[11] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[12] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[13] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[14] YI Xiaoou, HAN Wentuo, LIU Pingping, FERRONI Francesco, ZHAN Qian, WAN Farong. Defect Production, Evolution, and Thermal Recovery Mechanisms in Radiation Damaged Tungsten[J]. 金属学报, 2021, 57(3): 257-271.
[15] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
No Suggested Reading articles found!