|
|
FORMATION AND EVOLUTION OF PRECIPITATE IN TiAl ALLOY WITH ADDITION OF INTERSTITIAL CARBON ATOM |
ZHOU Huan, ZHANG Tiebang( ), WU Zeen, HU Rui, KOU Hongchao, LI Jinshan |
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072 |
|
Cite this article:
ZHOU Huan, ZHANG Tiebang, WU Zeen, HU Rui, KOU Hongchao, LI Jinshan. FORMATION AND EVOLUTION OF PRECIPITATE IN TiAl ALLOY WITH ADDITION OF INTERSTITIAL CARBON ATOM. Acta Metall Sin, 2014, 50(7): 832-838.
|
Abstract As promising light-weight high-temperature materials, g-TiAl base alloys are considered as prospective candidates for automobile and aerospace application due to their high specific yield strength. Adding Nb to TiAl alloys increases the liquidus temperature and results in improvents of creep resistance, high temperature strength and oxidation resistance. High Nb-containing TiAl alloys have attracted much attention during past decades. With the addition of carbon in Ti-46Al-8Nb-xC alloys (x=0, 0.7, 1.4, 2.5, atomic fraction, %), the formation of precipitates, the orientation relationship between precipitates and the TiAl matrix and the evolution of the precipitates during heat treatments have been investigated in this work by XRD, SEM and TEM. The results show that lath-shaped precipitates of Ti2AlC can be formed during the preparation of ingots with the addition of 1.4% and 2.5% of C. With good thermal stability, the size, amount and distribution of Ti2AlC precipitates remain almost stable during the aging process. Needle-shaped precipitates of Ti3AlC are formed in the aged alloys with 0.7%, 1.4% and 2.5% of C. And the precipitates are preferentially formed in g grains. The orientation relationship between Ti3AlC precipitates and g phase is found to be {100}Ti3AlC //{100}γ and <001> Ti3AlC //<001>γ. Meanwhile, the precipitation behavior and morphology of Ti3AlC are also discussed. Ti3AlC precipitates grow slightly after prolonged aging, while the amount of the precipitates remains small. With a higher aging temperature, the size of Ti3AlC precipitates increases significantly and an increasing amount of the precipitates is observed.
|
|
|
Fund: Supported by National Natural Science Foundation of China (Nos.51001086 and 51371144) and National Basic Research Program of China (No.2011CB605503) |
[1] |
Loria E A. Intermetallics, 2000; 8: 1339
|
[2] |
Kothari K, Radhakrishnan R, Wereley N M. Prog Aerosp Sci, 2012; 55: 1
|
[3] |
Noda T. Intermetallics, 1998; 6: 709
|
[4] |
Dimiduk D M. Mater Sci Eng, 1999; A263: 281
|
[5] |
Yu H C, Dong C L, Jiao Z H, Kong F T, Chen Y Y, Su Y J. Acta Metall Sin, 2013; 49: 1311
|
|
(于慧臣, 董成利, 焦泽辉, 孔凡涛, 陈玉勇, 苏勇君. 金属学报, 2013; 49: 1311)
|
[6] |
Appel F, Oehring M, Wagner R. Intermetallics, 2000; 8: 1283
|
[7] |
Gerling R, Schimansky F P, Stark A, Bartels A, Kestler H, Cha L, Scheu C, Clemens H. Intermetallics, 2008; 16: 689
|
[8] |
Perdrix F, Trichet M F, Bonnentien J L, Cornet M, Bigot J. Intermetallics, 2001; 9: 807
|
[9] |
Hecht U, Witusiewicz V, Drevermann A, Zollinger J. Intermetallics, 2008; 16: 969
|
[10] |
Clemens H, Mayer S. Adv Eng Mater, 2013; 15: 191
|
[11] |
Wu Z E, Hu R, Zhang T B, Zhou H, Kou H C, Li J S. Acta Metall Sin, 2013; 49: 1381
|
|
(吴泽恩, 胡 锐, 张铁邦, 周 欢, 寇宏超, 李金山. 金属学报, 2013; 49: 1381)
|
[12] |
Dong L M, Cui Y Y, Yang R. Acta Metall Sin, 2002; 38: 643
|
|
(董利民, 崔玉友, 杨 锐. 金属学报, 2002; 38: 643)
|
[13] |
Scheu C, Stergar E, Schober M, Cha L, Clemens H, Bartels A, Schimansky F P, Cerezo A. Acta Mater, 2009; 57: 1504
|
[14] |
Christoph U, Appel F, Wagner R. Mater Sci Eng, 1997; A239: 39
|
[15] |
Chen S, Beaven P A, Wagner R. Scr Metall Mater, 1992; 26: 1205
|
[16] |
Tian W H, Nemoto M. Intermetallics, 1997; 5: 237
|
[17] |
Appel F, Paul J D H, Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: Wiley-VCH, 2011: 282
|
[18] |
Gabrisch H, Stark A, Schimansky F P, Wang L, Schell N, Lorenz U, Pyczak F. Intermetallics, 2013; 33: 44
|
[19] |
Li S J, Wang Y L, Lin J P, Lin Z, Chen G L. Rare Met Mater Eng, 2004; 33: 144
|
|
(李书江, 王艳丽, 林均品, 林 志, 陈国良. 稀有金属材料与工程, 2004; 33: 144)
|
[20] |
Pietzka M A, Schuster J C. J Phase Equilib, 1994; 15: 392
|
[21] |
Cam G, Flower H M, West D R F. Mater Sci Technol, 1991; 7: 505
|
[22] |
Kurz W,Fisher D J,translated by Li J G,Hu Q D. Fundamentals of Solidification. 4th Ed., Beijing: Higher Education Press, 2010: 18
|
|
(Kurz W,Fisher D J 著,李建国,胡侨丹 译. 凝固原理. 第四版, 北京: 高等教育出版社, 2010: 18)
|
[23] |
Wei Z, Wang H, Jin Y, Zhang H, Zeng S. J Mater Sci, 2002; 37: 1809
|
[24] |
Chen G L, Xu X J, Teng Z K, Wang Y L, Lin J P. Intermetallics, 2007; 15: 625
|
[25] |
Chen Z, Su X, Xiang Z, Nie Z. J Mater Sci Technol, 2012; 28: 453
|
[26] |
Xia Q F, Wang J N, Yang J, Wang Y. Intermetallics, 2001; 9: 361
|
[27] |
Wang P, Viswanathan G B, Vasudevan V K. Metall Trans, 1992; 23A: 690
|
[28] |
Menand A, Huguet A, Nerac-Partaix A. Acta Mater, 1996; 44: 4729
|
[29] |
Kanchana V. EPL-Europhys Lett, 2009; 87: 26006
|
[30] |
Tian W H, Sano T, Nemoto M. Philos Mag, 1993; 68A: 965
|
[31] |
Xu Z,Zhao L C. Metal-Solid Phase Transition Theory. Beijing: Science Press, 2004: 7
|
|
(徐 洲,赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 7)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|