Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (4): 557-565    DOI: 10.11900/0412.1961.2017.00147
Orginal Article Current Issue | Archive | Adv Search |
Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates
Xudong LI, Pingli MAO(), Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
Download:  HTML  PDF(5031KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a very important design principle, the dynamic properties of materials attracted extensive attention in resent years and a bunch of works have been done concerning with the materials deformation behaviors under high strain rates. However, the dynamic behaviors of magnesium alloys are not through understood, especially the rare earth based magnesium alloys. In order to investigate the dynamic and anisotropic behavior under high strain rates deformation of as-extruded Mg-3Zn-1Y magnesium alloy, the split Hopkinson pressure bar (SHPB) apparatus was used to testing the true stress-true strain curves under the high strain rates of 1000, 1500 and 2200 s-1 of as-extruded Mg-3Zn-1Y magnesium alloy. The OM and SEM were used to analysis the micorstructure evolution and fracture surface morphology of the alloy. The true reason behind the anisotropic phenomenon was revealed based on the deformation mechanism of highly basal-textured magnesium alloy. The results demonstrate that the as-extruded Mg-3Zn-1Y magnesium alloy exhibits pronounced anisotropy during compression according to the loading direction. The anisotropy of the as-extruded Mg-3Zn-1Y magnesium alloy are arised from the variety of the deformation mechanisms. When the loading direction is along extrusion direction, the predominant deformation mode changes from extension twinning at a lower strain to prismatic slip at a higher strain. While compressed along extrusion radial direction (ERD), the predominant deformation mode changes from contraction twinning to a coordination of basal and second order pyramidal slip with the increasing of strain.

Key words:  magnesium alloy      anisotropy      high strain rate      deformation mechanism     
Received:  25 April 2017     
ZTFLH:  TG146.2  
Fund: Supported by Science and Technology Project of Shenyang (No.17-9-6-00)

Cite this article: 

Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates. Acta Metall Sin, 2018, 54(4): 557-565.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00147     OR     https://www.ams.org.cn/EN/Y2018/V54/I4/557

Fig.1  Schematic of sample cutting arrangement (ED—extrusion direction, ERD—extrusion radial direction)
Fig.2  OM images of microstructures in as-extruded Mg-3Zn-1Y magnesium alloy for samples ED (a) and ERD (b)
Fig.3  Compression true stress-true strain curves of as-extruded Mg-3Zn-1Y magnesium alloy at high strain rates under loading directions of ED (a) and ERD (b)
Fig.4  Relationships between yield strength and strain rate of as-extruded Mg-3Zn-1Y magnesium alloy under loading directions of ED and ERD
Fig.5  True stress-true strain curves of as-extruded Mg-3Zn-1Y magnesium alloy under different loading directions at low and high strain rates
Fig.6  Hardening rate-true strain curves of as-extruded Mg-3Zn-1Y magnesium alloy under loading directions of ED and ERD (σ—true stress, ε—true strain)
Fig.7  Relationships between impact absorbing work (E) and strain rates of as-extruded Mg-3Zn-1Y magnesium alloy under loading directions of ED and ERD
Fig.8  OM images of deformation microstructures in as-extruded Mg-3Zn-1Y alloy along ED loading direction at strain rates of 1000 s-1 (a), 1500 s-1 (b) and 2200 s-1 (c)
Fig.9  OM images of deformation microstructures in Mg-3Zn-1Y alloy along ERD loading direction at strain rates of 1000 s-1 (a), 1500 s-1 (b) and 2200 s-1 (c)
Fig.10  XRD spectra of as-extruded Mg-3Zn-1Y alloy for samples ED (a) and ERD (b)
Fig.11  Schematics of the relative relationship between the loading direction of as-extruded Mg-3Zn-1Y magnesium alloy and the c-axis of grain before (a, c) and after (b, d) compression along ED (a, b) and ERD (c, d) loading direction
Fig.12  Morphologies of compression fracture surfaces for as-extruded Mg-3Zn-1Y magnesium alloy along loading directions of ED (a) and ERD (b) at 2200 s-1
[1] Mordike B L, Ebert T.Magnesium: Properties-applications-potential[J]. Mater. Sci. Eng., 2001, A302: 37
[2] Aghion E, Bronfin B. Magnesium alloys development towards the 21st century [J]. Mater. Sci. Forum, 2000, 350-351: 19
[3] Van Fleteren R.Magnesium for automotive applications[J]. Adv. Mater. Process., 1996, 149(5): 33
[4] Kleiner S, Uggowitzer P J.Mechanical anisotropy of extruded Mg-6% Al-1% Zn alloy[J]. Mater. Sci. Eng., 2004, A379: 258
[5] Bohlen J, Nürnberg M R, Senn J W, et al.The texture and anisotropy of magnesium-zinc-rare earth alloy sheets[J]. Acta Mater., 2007, 55: 2101
[6] Yin S M, Wang C H, Diao Y D, et al.Influence of grain size and texture on the yield asymmetry of Mg-3Al-1Zn alloy[J]. J. Mater. Sci. Technol., 2011, 27: 29
[7] Ball E A, Prangnell P B.Tensile-compressive yield asymmetries in high strength wrought magnesium alloys[J]. Scr. Metall. Mater., 1994, 31: 111
[8] Yin D L, Wang J T, Liu J Q, et al.On tension-compression yield asymmetry in an extruded Mg-3Al-1Zn alloy[J]. J. Alloys Compd., 2009, 478: 789
[9] Mao P L, Liu Z, Wang C Y, et al.Deformation microstructure of AZ31B magnesium alloy under high strain rate compression[J]. Chin. J. Nonferrous Met., 2009, 19: 816(毛萍莉, 刘正, 王长义 等. 高应变速率下AZ31B镁合金的压缩变形组织 [J]. 中国有色金属学报, 2009, 19: 816)
[10] Watanabe H, Ishikawa K.Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy[J]. Mater. Sci. Eng., 2009, A523: 304
[11] Agnew S R, Duygulu ?.Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B[J]. Int. J. Plast., 2005, 21: 1161
[12] Nave M D, Barnett M R.Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scr. Mater., 2004, 51: 881
[13] Yang Y B, Wang F C, Tan C W, et al.Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression[J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 1043
[14] Barnett M R, Keshavarz Z, Beer A G, et al.Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn[J]. Acta Mater., 2004, 52: 5093
[15] Barnett M R.Twinning and the ductility of magnesium alloys: Part II. "Contraction" twins[J]. Mater. Sci. Eng., 2007, A464: 8
[16] Wan G, Wu B L, Zhang Y D, et al.Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy[J]. Mater. Sci. Eng., 2010, A527: 2915
[17] Liu Z, Zhang K, Zeng X Q.Theory and Application of Mg-Based Light Alloy [M]. Beijing: China Machine Press, 2002: 32(刘正, 张奎, 曾小勤. 镁基轻质合金理论基础及其应用 [M]. 北京: 机械工业出版社, 2002: 32)
[18] Barnett M R.Twinning and the ductility of magnesium alloys: Part I: "Tension" twins[J]. Mater. Sci. Eng., 2007, A464: 1
[19] Jiang L, Jonas J J, Mishra R K, et al.Twinning and texture development in two Mg alloys subjected to loading along three different strain paths[J]. Acta Mater., 2007, 55: 3899
[20] Jiang L, Jonas J J, Luo A A, et al. Influence of {10$\bar{1}$2} extension twinning on the flow behavior of AZ31 Mg alloy [J]. Mater. Sci. Eng., 2007, A445-446: 302
[21] Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium[J]. Mater. Sci. Eng., 2005, A399: 1
[22] Gehrmann R, Frommert M M, Gottstein G.Texture effects on plastic deformation of magnesium[J]. Mater. Sci. Eng., 2005, A395: 338
[23] Wang M Y, Xin R L, Wang B S, et al.Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling[J]. Mater. Sci. Eng., 2010, A528: 2941
[24] Christian J W, Mahajan S.Deformation twinning[J]. Prog. Mater. Sci., 1995, 39: 1
[25] Luo J R, Liu Q, Liu W.Influence of rolling temperature on the {1010$\bar{1}$1}-{10$\bar{1}$21}-{10$\bar{1}$1}-{10$\bar{1}$2} twinning in rolled AZ31 magnesium alloy sheets[J]. Acta Metall. Sin., 2012, 48: 717(罗晋如, 刘庆, 刘伟. 轧制温度对AZ31镁合金轧制板材中的{1010$\bar{1}$1}-{10$\bar{1}$21}-{1010$\bar{1}$1}-{10$\bar{1}$22}双孪生行为的影响 [J]. 金属学报, 2012, 48: 717)
[26] Chen Z H, Xia W J, Cheng Y Q, et al.Texture and anisotropy in magnesium alloys[J]. Chin. J. Nonferrous Met., 2005, 15: 1(陈振华, 夏伟军, 程永奇 等. 镁合金织构与各向异性 [J]. 中国有色金属学报, 2005, 15: 1)
[27] Bingert J F, Mason T A, Kaschner G C, et al.Deformation twinning in polycrystalline Zr: Insights from electron backscattered diffraction characterization[J]. Metall. Mater. Trans., 2002, 33A: 955
[1] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[2] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[3] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[4] WANG Li,HE Yufeng,SHEN Jian,ZHENG Wei,LOU Langhong,ZHANG Jian. Effect of Secondary Orientation on Oxidation Anisotropy Around the Holes of Single Crystal Superalloy During Thermal Fatigue Tests[J]. 金属学报, 2019, 55(11): 1417-1426.
[5] HE Xianmei, TONG Liuniu, GAO Cheng, WANG Yichao. Effect of Nd Content on the Structure and Magnetic Properties of Si(111)/Cr/Nd-Co/Cr Thin Films Prepared by Magnetron Sputtering[J]. 金属学报, 2019, 55(10): 1349-1358.
[6] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[7] Xiaoqin MA, Qingfeng ZHAN, Jincai LI, Qingfang LIU, Baomin WANG, Runwei LI. Influence of Oblique Sputtering on Stripe Magnetic Domain Structure and Magnetic Anisotropy of CoFeB Thin Films[J]. 金属学报, 2018, 54(9): 1281-1288.
[8] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[9] Xiangru GUO, Chaoyang SUN, Chunhui WANG, Lingyun QIAN, Fengxian LIU. Investigation of Strain Rate Effect by Three-Dimensional Discrete Dislocation Dynamics for fcc Single Crystal During Compression Process[J]. 金属学报, 2018, 54(9): 1322-1332.
[10] Mingliang HUANG, Hongyu SUN. Interaction Between β-Sn Grain Orientation and Electromigration Behavior in Flip-Chip Lead-Free Solder Bumps[J]. 金属学报, 2018, 54(7): 1077-1086.
[11] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[12] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[13] Peibei JI, Lichu ZHOU, Xuefeng ZHOU, Feng FANG, Jianqing JIANG. Study on Anisotropic Mechanical Properties of Cold Drawn Pearlitic Steel Wire[J]. 金属学报, 2018, 54(4): 494-500.
[14] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
[15] Shujun CHEN, Xuan WANG, Tao YUAN, Xiaoxu LI. Research on Prediction Method of Liquation Cracking Susceptibility to Magnesium Alloy Welds[J]. 金属学报, 2018, 54(12): 1735-1744.
No Suggested Reading articles found!