Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 219-225    DOI: 10.3724/SP.J.1037.2013.00737
Current Issue | Archive | Adv Search |
ATOMISTIC SIMULATIONS OF BAUSCHINGER EFFECT IN NANOCRYSTALLINE ALUMINUM THIN FILMS
LI Xiaoyan1,2()
1 School of Engineering, Brown University, Providence, RI 02912, USA
2 Centre for Advanced Mechanics and Materials, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article: 

LI Xiaoyan. ATOMISTIC SIMULATIONS OF BAUSCHINGER EFFECT IN NANOCRYSTALLINE ALUMINUM THIN FILMS. Acta Metall Sin, 2014, 50(2): 219-225.

Download:  HTML  PDF(5303KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The early Bauschinger effect in nanocrystalline Al thin films with different thicknesses and microstructural orientations was investigated using large-scale atomistic simulations. The simulation results indicate that the microstructural orientation heterogeneity has a significant influence on the early Bauschinger effect and the associated plastic deformation mechanisms. The (110)-textured thin films show less Bauschinger effect compared to non-textured films despite having the same grain size, shape and thickness. The atomistic simulations reveal that the early Bauschinger effect originates from the reverse motion of dislocations and the reduction in dislocation density due to dislocation reactions during unloading, which are driven by the internal residual stress caused by the inhomogeneous deformation during loading.

Key words:  nanocrystalline aluminum thin film      Bauschinger effect      dislocation      plastic deformation      atomistic simulation     
Received:  15 November 2013     
ZTFLH:  TG146.1  
Fund: Supported by National Science Foundation (Nos.DMR-0520651, CMMI-0758535 and MSS090046)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00737     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/219

Fig.1  

分子动力学模拟中所采用的试样的初始构型

Fig.2  

分子动力学模拟得到的应力-应变曲线

Fig.3  

具有不同晶粒取向的试样的塑性变形机制

Fig.4  

在卸载过程中某晶粒内部位错线的反向运动

Fig.5  

在卸载过程中某晶粒内部由于位错反应造成位错密度的降低

[1] Lu K, Zhou F. Acta Metall Sin, 1997; 33: 99
(卢 柯, 周 飞. 金属学报, 1997; 33: 99)
[2] Kumar K S, Van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
[3] Yamakov V, Wolf D, Philpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2004; 3: 43
[4] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[5] Van Swygenhoven H, Weertman J R. Mater Today, 2006; 9: 24
[6] Wu X, Zhu Y T, Chen M W, Ma E. Scr Mater, 2006; 54: 1685
[7] Legros M, Gianola D S, Hemker K J. Acta Mater, 2008; 56: 3380
[8] Lu L, Sui M L, Lu K. Science, 2000; 287: 1463
[9] Shan Z W, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M, Mao S X. Science, 2004; 305: 654
[10] Yang W, Wang H T. J Mech Phys Solids, 2004; 52: 875
[11] Wang H T, Yang W. J Mech Phys Solids, 2004; 52: 1151
[12] Hall E O. Proc Phys Soc, 1951; 51B: 747
[13] Petch H J. J Iron Steel Inst, 1953; 174: 25
[14] Chokshi A H, Rosen A, Karch J, Gleiter H. Scr Metall, 1989; 23: 1679
[15] Schiotz J, Jacobsen K W. Science, 2003; 301: 1357
[16] Jiang Z, Liu X, Li G, Jiang Q, Lian J. Appl Phys Lett, 2006; 88: 143115
[17] Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S. Acta Mater, 2003; 51: 5159
[18] Wang Y M, Hamza A V, Ma E. Acta Mater, 2006; 54: 2715
[19] Wei Y J, Bower A F, Gao H J. Acta Mater, 2008; 56: 1741
[20] Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 061921
[21] Gianola D S, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker K J. Acta Mater, 2006; 54: 2253
[22] Rajagopalan J, Han J H, Saif M T A. Science, 2007; 315: 1831
[23] Rajagopalan J, Han J H, Saif M T A. Scr Mater, 2008; 59: 921
[24] Li X Y, Wei Y J, Yang W, Gao H J. Proc Natl Acad Sci USA, 2009; 106: 16108
[25] Margolin H, Hazaveh F, Yaguchi H. Scr Metall, 1978; 12: 1141
[26] Ono N, Tsuchikawa T, Nishimura S, Karashima S. Mater Sci Eng, 1983; 59: 223
[27] Baker S P, Keller-Flaig R M, Shu J B. Acta Mater, 2003; 51: 3019
[28] Xiang Y, Vlassak J J. Scr Mater, 2005; 53: 177
[29] Nicola, L, Xiang Y, Vlassak J J, Van der Giessen E, Needleman A. J Mech Phys Solids, 2006; 54: 2089
[30] Stoltz R E, Pelloux R M. Metall Trans, 1976; 7A: 1295
[31] Aran A, Demirkol M, Karabulut A. Mater Sci Eng, 1987; 89: L35
[32] Rajagopalan J, Rentenberger C, Karnthealer H P, Dehm G, Saif M T A. Acta Mater, 2010; 58: 4772
[33] Espinosa H D, Panico M, Berbenni S, Schwarz K W. Int J Plast, 2006; 22: 2091
[34] Fang H, Horstemeyer M F, Baskes M I, Solanki K. Comput Method Appl Mech Eng, 2004; 193: 1789
[35] Mishin M, Farkas D, Mehl M J, Papaconstantopoulos D A. Phys Rev, 1999; 59B: 3393
[36] Nose S A. J Chem Phys, 1984; 81: 511
[37] Tuckerman M, Berne B J, Mantyna G J. J Chem Phys, 1992; 97: 1990
[38] Van Swygenhoven H, Farkas D, Caro A. Phys Rev, 2000; 62B: 831
[39] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K, Gleiter H. Nat Mater, 2002; 1: 45
[1] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[2] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[3] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[4] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[5] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[8] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[9] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[10] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[11] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[12] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[13] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[14] LIN Pengcheng, PANG Yuhua, SUN Qi, WANG Hangduo, LIU Dong, ZHANG Zhe. 3D-SPD Rolling Method of 45 Steel Ultrafine Grained Bar with Bulk Size[J]. 金属学报, 2021, 57(5): 605-612.
[15] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
No Suggested Reading articles found!