Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (2): 226-230    DOI: 10.3724/SP.J.1037.2013.00570
Current Issue | Archive | Adv Search |
INVESTIGATION OF ATOMISTIC DEFORMATION MECHANISM OF GRADIENT NANOTWINNED COPPER USING MOLECULAR DYNAMICS SIMULATION METHOD
ZHOU Haofei, QU Shaoxing()
Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027
Cite this article: 

ZHOU Haofei, QU Shaoxing. INVESTIGATION OF ATOMISTIC DEFORMATION MECHANISM OF GRADIENT NANOTWINNED COPPER USING MOLECULAR DYNAMICS SIMULATION METHOD. Acta Metall Sin, 2014, 50(2): 226-230.

Download:  HTML  PDF(3765KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Strengthening by twin boundaries at nanoscale and gradient surface nanocrystallization are two important strengthening approaches recently drawing considerable attention in the field of metallic material research. In the present work, a novel nanostructure, i.e., gradient nanoscale twin boundaries, is proposed. To reveal their unique deformation mechanism, uniaxial tension simulations of gradient nanotwinned copper are investigated by molecular dynamics simulations. The results show that partial dislocations govern the deformation of relatively thicker twins while full dislocations control the deformation of relatively thinner twin layers. Nanoindentation processes of gradient nanotwinned copper are also performed, providing insights on the strengthening and hardening effects of nanoscale twin boundaries.

Key words:  molecular dynamics      nanoscale twin boundary      dislocation      strength     
Received:  09 September 2013     
ZTFLH:  TG113.25  
Fund: Supported by National Natural Science Foundation of China (Nos.11172264 and 11222218) and Science and Technology Innovative Research Team of Zhejiang Province (No.2009R50010)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00570     OR     https://www.ams.org.cn/EN/Y2014/V50/I2/226

Fig.1  

梯度纳米孪晶Cu试样结构示意图

Fig.2  

梯度纳米孪晶Cu单轴拉伸过程原子结构图

Fig.3  

孪晶界分布不同的4种材料在单向拉伸下的应力-应变曲线

Fig.4  

单晶Cu (Single crystal)和双晶Cu (Bicrystal)试样拉伸过程的原子结构图

Fig.5  

均匀分布孪晶Cu (Uniform-twinned crystal)试样原子结构图

Fig.6  

梯度纳米孪晶Cu纳米压痕模拟结果

[1] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[2] Lu K, Lu L, Suresh S. Science, 2009; 324: 349
[3] Wang Y B, Sui M L. Appl Phys Lett, 2009; 94: 021909
[4] Qin E W, Lu L, Tao N R, Lu K. Scr Mater, 2009; 60: 539
[5] Shan Z W, Lu L, Minor A M, Stach E A, Mao S W.JOM, 2008; 60: 71
[6] Cao A J, Wei Y G. J Appl Phys, 2007; 102: 083511
[7] Dao M, Lu L, Shen Y F, Suresh S. Acta Mater, 2006; 54: 5421
[8] Zhu T, Li J, Samanta A, Kim H G, Suresh S. PNAS, 2007; 104: 3031
[9] Jin Z H, Gumbsch P, Albe K, Ma E, Lu K, Gleiter H, Hahn H. Acta Mater, 2008; 56: 1126
[10] Li X Y, Wei Y J, Lu L, Lu K, Gao H J. Nature, 2010; 464: 877
[11] Zhou H F, Qu S X, Yang W. Modell Simul Mater Sci Eng, 2010; 18: 065002
[12] Qu S X, Zhou H F. Scr Mater, 2011; 65: 265
[13] Qu S X, Zhou H F, Huang Z L. Scr Mater, 2011; 65: 715
[14] Gleiter H. Acta Mater, 2000; 48: 1
[15] Kumar K S, Swygenhoven H V, Suresh S. Acta Mater, 2003; 51: 5743
[16] Chen J, Lu L, Lu K. Scr Mater, 2006; 54: 1913
[17] Knapp J A, Follstaedt D M. J Mater Res, 2004; 19: 218
[18] Schuh C A, Nieh T G, Iwasaki H. Acta Mater, 2003; 51: 431
[19] Li H Q, Ebrihimi F. Acta Mater, 2006; 54: 2877
[20] Schwaiger R, Moser B, Dao M, Chollacoop N, Suresh S. Acta Mater, 2003; 51: 5159
[21] Hanlon T, Kwon Y N, Suresh S. Scr Mater, 2003; 49: 675
[22] Witney A B, Sanders P G, Weertman J R. Scr Mater, 1995; 33: 2025
[23] Bellemare S C, Dao M, Suresh S. Mech Mater, 2008; 40: 206
[24] Fang T H, Li W L, Tao N R, Lu K. Science, 2011; 331: 1587
[25] Honeycutt J D, Andersen H C. J Phys Chem, 1987; 91: 4950
[26] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D. Phys Rev, 2001; 63B: 224106
[27] Qu S X, Wang G M, Zhou H F, Huang Z L. Comput Mater Sci, 2011; 50: 1567
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[6] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[7] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[8] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[9] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[10] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[11] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[12] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[13] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[14] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[15] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
No Suggested Reading articles found!