Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 71-78    DOI: 10.3724/SP.J.1037.2013.00474
Original Articles Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND HYDROGEN PERMEATION CHARACTERISTIC OF NEAR EUTECTIC Nb-Ti-Co HYDROGEN SEPARATION ALLOY
YAN Erhu, LI Xinzhong(), TANG Ping, SU Yanqing, GUO Jingjie, FU Hengzhi
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001
Cite this article: 

YAN Erhu, LI Xinzhong, TANG Ping, SU Yanqing, GUO Jingjie, FU Hengzhi. MICROSTRUCTURE AND HYDROGEN PERMEATION CHARACTERISTIC OF NEAR EUTECTIC Nb-Ti-Co HYDROGEN SEPARATION ALLOY. Acta Metall Sin, 2014, 50(1): 71-78.

Download:  HTML  PDF(9786KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Because of the high hydrogen permeability and high resistance to hydrogen embrittlement of Pd-based alloys, Pd-Ag alloys have been used as hydrogen permeation membranes for separation and purification of hydrogen gas. However, Pd is too expensive for large-scale industrial applications as hydrogen permeation membranes. The development of alternative membrane materials with higher hydrogen purification efficiency and lower cost is therefore strongly desired. From the viewpoint of the hydrogen permeability, some bcc metals such as Nb, V and Ta are promising candidates since their predicted hydrogen permeability are larger than that of Pd. Nb-Ti-Co ternary alloy has been considered as the best candidate because of lower cost, good thermal stability, the high hydrogen permeability and high resistance to hydrogen embrittlement. In this work, the eutectic composition in Nb-Ti-Co alloy was probed and verified through Bridgman directional solidification experiment. Microstructures, hydrogen permeation properties and hydrogen embrittlement of near eutectic Nb-Ti-Co alloy were investigated and compared with those of pure Pd. The results indicate that the eutectic composition in Nb-Ti-Co alloy is Nb31Ti35Co34, and its solidification microstructures contain only the Nb(Ti, Co) and TiCo phase, which shows regular coupled growth by Bridgman directional solidification at the rate of 5 μm/s. The eutectic alloy shows the higher hydrogen permeability of 2.7×10-8 mol/(m·s·Pa0.5) at 673.5 K, which is 1.72 times higher than that of Pd alloy. The hydrogen permeability decreases with the decrease of Ti/Co ratio at the same Nb content. A slight crack first appears in the TiCo phase, which is the source of cracks in the membrane, and then the cracks propagate along the edge of the membrane. When the volume fraction of TiCo phase is less than 5%, the eutectic Nb(Ti, Co)+TiCo phases may offset the crack in the TiCo phase, thus the membrane exhibits large resistance to the hydrogen embrittlement.

Key words:  Nb-Ti-Co alloy      microstructure      hydrogen permeability      hydrogen embrittlement     
Received:  05 August 2013     
ZTFLH:  TG139  
Fund: Supported by National Natural Science Foundation of China (Nos.51274077 and 51271068) and Fundamental Research Funds for the Central Universities (No.HIT.NSRIF.2013002)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00474     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/71

Fig.1  

Nb-Ti-Co 氢分离合金成分设计及其于相图位置示意图

Fig.2  

不同成分下Nb-Ti-Co合金的XRD谱

Fig.3  

N5和N7合金的SEM像

Position Nb Ti Co
1 6 45 49
2 31 37 32
3 79 18 3
4 26 38 36
Table 1  EDS results of Nb-Ti-Co alloy measured at the different positions shown in Fig.3(atomic fraction / %)
Fig.4  

近共晶点处N1~N9合金的微观组织

Fig.5  

定向凝固N9合金纵截面的显微组织

Fig.6  

N6~N9 合金成分的( J· δ)与 Δ P 1 / 2 = P H 1 / 2 - P L 1 / 2 关系曲线

Fig.7  

N6~N9合金的氢渗透系数Ф与温度T的Arrhenius关系曲线

Fig.8  

N3合金氢渗透后的宏观和微观断裂形貌

[1] Hydrogen Association. Hydrogen Technology. Beijing: Science Press, 2009: 1
(氢能协会. 氢能技术. 北京: 科学出版社, 2009: 1)
[2] Xu J A. Fuel Cell Technologies. Beijing: Chemical Industry Press, 2004: 1
(徐静安. 燃料电池技术. 北京: 化学工业出版社, 2004: 1)
[3] Sun Y,Su W,Zhou L. Hydrogen Fuel. Beijing: Chemical Industry Press, 2005: 1
(孙 艳,苏 伟,周 理. 氢燃料. 北京: 化学工业出版社, 2005: 1)
[4] Xiong L Y, Liu S, Wang L B, Rong L J.Acta Metall Sin, 2008; 44: 781
(熊良银, 刘 实, 王隆宝, 戎利建. 金属学报, 2008; 44: 781)
[5] Shimpo Y, Yamaura S I, Okouchi H, Nishida M, Kajita O, Kimura H, Inoue A.J Alloys Compd, 2004; 372: 197
[6] Zhang Y, Ozaki T, Komaki M, Nishimura C.J Membrane Sci, 2003; 224: 81
[7] Paglieri S N, Way J D.Sep Purif Methods, 2002; 31(1): 1
[8] Hashi K, Ishikawa K, Matsuda T, Aoki K.J Alloys Compd, 2004; 368: 215
[9] Hashi K, Ishikawa K, Matsuda T, Aoki K. J Alloys Compd, 2005; 404-406: 273
[10] Luo W M, Ishikawa K, Aoki K.Int J Hydrogen Energy, 2012; 37: 12793
[11] Hashi K, Ishikawa K, Matsuda T, Aoki K.J Alloys Compd, 2006; 425: 284
[12] Kang H J, Su Y Q, Liu D M, Guo J J, Fu H Z.Intermetallics, 2012; 23: 32
[13] Liu D M, Li X Z, Su Y Q, Guo J J, Fu H Z.Intermetallics, 2011; 19: 175
[14] Su Y Q, Liu D M, Li X Z, Guo J J, Fu H Z.J Cryst Growth, 2010; 312: 2441
[15] Xiong L Y, Liu S, Rong L J.Int J Hydrogen Energy, 2010; 35: 1643
[16] Awakura Y, Nambu T, Matsumoto Y, Yukawa H.J Alloys Compd, 2011; 509S: S877
[17] Luo W, Ishikawa K, Aoki K. J Alloys Compd, 2008; 460: 353
[18] Wang W, Ishikawa K, Aoki K.J Membrane Sci, 2010; 351: 65
[19] Song G, Kellam M E, Liang D, Dolan M D.J Membrane Sci, 2010; 363: 309
[20] Ozaki T, Zhang Y, Komaki M, Nishimura C.Int J Hydrogen Energy, 2003; 28: 1229
[21] Hashi K, Ishikawa K, Matsuda T, Aoki K.Mater Trans, 2005; 46: 1026
[22] Arantes D R, Huang X Y, Marte C, Kirchheim R.Acta Metall Mater, 1993; 41: 3215
[23] Uchida H T, Kirchheim R, Pundt A.Scr Mater, 2011; 64: 935
[24] Deutges M, Knorr I, Borchers C, Volkert C A, Kirchheim R.Scr Mater, 2013; 68: 71
[25] Kishida K, Yamaguchi Y, Tanaka K, Inui H, Tokui S, Ishikawa K, Aoki K.Intermetallics, 2008; 16: 88
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!