Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1487-1492    DOI: 10.3724/SP.J.1037.2013.00572
Current Issue | Archive | Adv Search |
EFFECT OF COOLING RATE ON MICROSTRUCTURE AND TENSILE PROPERTIES IN Ti3Al ALLOY
WANG Zhen1), CAO Lei1,2), LIU Renci1), LIU Dong1), CUI Yuyou1), YANG Rui1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) College of Materials and Metallurgy, Northeastern University, Shenyang 110819
Cite this article: 

WANG Zhen, CAO Lei, LIU Renci, LIU Dong, CUI Yuyou, YANG Rui. EFFECT OF COOLING RATE ON MICROSTRUCTURE AND TENSILE PROPERTIES IN Ti3Al ALLOY. Acta Metall Sin, 2013, 49(11): 1487-1492.

Download:  PDF(4537KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and tensile properties in Ti3Al alloy rod by forging in the (B2+α2) region after heating at 1020 and 1150℃ for 30 min and cooling to room temperature at the cooling rates of 10, 1.5 and 0.3℃/s were investigated. The results showed that Ti3Al alloy structure was mainly composed of B2 phase and α2 phase at the cooling rate of 10℃/s after heating at 1020℃. With the decrease of cooling rate, the acicular α2/O phase homogeneously precipitated in the matrix on slow cooling. The volume fraction of equiaxed α2/O phase increased and the acicular α2/O phase was coarsed under the cooling rate of 0.3℃/s. For room temperature tensile tests, the data indicated that the strength initially increased and then decreased and the ductility firstly decreased and then increased with reducing cooling rate. During the 600℃ tensile tests, the strength decreased monotonically and ductility rose as reducing cooling rate. When solid solution temperature was 1150℃, Ti3Al alloy was mainly composed of B2 phase and the size of grain was 440 $\mu$m by fast cooling. Basketweave structure was obtained in the grain at the cooling rate of 1.5℃/s. The α2/O phase colony precipitated in the B2 phase with further reducing the cooling rate. With the decrease of cooling rate, the strength decreased gradually and ductility initially increased and then decreased at the room temperature, the 600℃ tensile strength firstly went up and then down and ductility increased. Through microstructure analysis, strength in Ti3Al alloy is controlled by boundary and the size of α2/O phase, and ductility is decided by the number of B2 phase and α2/O phase and the shape of α2/O phase. The good comprehensive properties were obtained at the cooling rate of 1.5℃/s.

Key words:  Ti3Al alloy      cooling rate      microstructure      tensile property     
Received:  09 September 2013     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00572     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1487

[1] Dimiduk D M, Miracle D B, Ward C H.  Mater Sci Technol, 1992; 8: 367

[2] Cao C X, Ma J M, Yan M G.  Mater Eng, 1991; (2): 32
(曹春晓, 马济民, 颜鸣皋. 材料工程, 1991; (2): 32)
[3] Williams J C, Starke E A.  Acta Mater, 2003; 51: 5775
[4] Li S Q, Zhang J W, Cheng Y J, Liang X B.  Rare Met Mater Eng, 2005; 34(suppl. 3): 104
(李世琼, 张建伟, 程云君, 梁晓波. 稀有金属材料与工程, 2005; 34(增刊3): 104)
[5] Si Y F, Chen Z Y, Meng L H, Wang Z W, Chen Y Y.  Spec Cast Nonferrous Alloys, 2003; (4): 33
(司玉锋, 陈子勇, 孟丽华, 王肇文, 陈玉勇. 特种铸造及有色合金, 2003; (4): 33
[6] Sagar P K.  Mater Sci Eng, 2006; A434: 259
[7] Wang M G, Sun J K, Chen J Q.  Rare Met Lett, 2007; 26(11): 8
(王孟光, 孙建科, 陈志强. 稀有金属快报, 2007; 26(11): 8)
[8] Mishra R S, Banerjee D.  Scr Metall Mater, 1990; 24: 1477
[9] Dary F C, Thompson A W. In: Froes F H, Caplan I L, eds.,Titanium'92: Science and Technology, Warrendale,PA: The Minerals, Metals and Materials Society, 1993: 375
[10] Huang C, Loretto M H. In: Blenkinsop P A, Evans W J, Flower H M, eds.,Titanium'95: Science and Technology, London: Institute of Materials, 1996: 558
[11] Wu Y, Tang Z X, Yang D Z, Li D M.  Mater Sci Technol, 1996; 4(1): 24
(武英, 唐之秀, 杨德庄, 李明道. 材料科学与工艺, 1996; 4(1): 24)
[12] Banerjee D, Gogia A K, Nanay T K.  Acta Metall Mater, 1988; 36: 871
[13] Banerjee D, Baligidad R G, Gogia A K. In: Hemker K J, Dimiduk D M, Clemens H,Darolia R, Inui H, Larsen J M, Sikka V K, Thomas M, Whittenberger J D, eds.,Structural Intermetallics 2001, Warrendale, PA: The Minerals, Metals and Materials Society, 2001: 43
[14] Zhang Y G, Han Y F, Chen G L, Guo J T, Wan X J, Feng D.  Structure Intermetallics.Beijing: National Defence Industry Press, 2001: 789
(张永刚, 韩雅芳, 陈国良, 郭建亭, 万晓景, 冯涤. 金属间化合物结构材料.北京: 国防工业出版社, 2001: 789)
[15] Cao J X, Xu J W, Huang X.  Rare Met, 2006; 30(special issue): 13
(曹京霞, 许剑伟, 黄旭. 稀有金属, 2006; 30(专辑): 13)
[16] Cao J X, Sun Y F, Cao C X.  Rare Met, 1997; 21: 490
(曹京霞, 孙育峰, 曹春晓. 稀有金属, 1997; 21: 490)
[17] Cao J X, Xu J W.  Titanium Ind Prog, 2008; 25(1): 15
(曹京霞, 许剑伟. 钛工业进展, 2008; 25(1): 15)
[18] Xu J W, Huang X, Gao J X.  Rare Met, 2004; 28(1): 50
(许剑伟, 黄旭, 曹京霞. 稀有金属, 2004; 28(1): 50)
[19] Cao J X, He S L, Shi W M, Wang H W, Wang X.  Chin J Nonferrous Met,2010; 20(special issue 1): 207
(曹京霞, 何书林, 石为民, 王宏武, 王新. 中国有色金属学报, 2010; 20(专辑1): 207)
[20] Cao J X, Duan R, Li Z X.  Rare Met Mater Eng, 2008; 37(suppl. 3): 541
(曹京霞, 段锐, 李臻熙. 稀有金属材料与工程, 2008; 37(增刊3): 541)
[21] Cao J X, Duan R, Li Z X.  Rare Met, 2009; 33: 746
(曹京霞, 段锐, 李臻熙. 稀有金属, 2009; 33: 746)
[22] Muraleedharan K, Gogia A K, Nandy T K, Banerjee D, Lele S.  Metall Mater Trans,1992; 23A: 401
[23] Wang Y, Ma N, Chen Q, Zhang F, Chen S L, Chang Y A.  JOM, 2005; 57: 32
[24] Ward C H.  Int Mater Rev, 1993; 38: 79
[25] Gogia A K, Banerjee D, Nandy T K.  Metall Trans, 1990; 21A: 609
[26] Wu Y, Tang Z X, Yang D Z, Li D M.  Chin J Nonferrous Met, 1996; 6(3): 99

(武英, 唐之秀, 杨德庄, 李道明. 中国有色金属学报, 1996; 6(3): 99)

[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!