Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (11): 1399-1405    DOI: 10.3724/SP.J.1037.2013.00442
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND PROPERTY OF ISOTHERMAL FORGED SPRAY FORMING FGH4095 SUPERALLOY
XU Yi1), HUANG Peng1), SHU Qin1), GUO Biao1), SUN Chuanshui1,2)
1) School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031
2) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

XU Yi, HUANG Peng, SHU Qin, GUO Biao, SUN Chuanshui. MICROSTRUCTURE AND PROPERTY OF ISOTHERMAL FORGED SPRAY FORMING FGH4095 SUPERALLOY. Acta Metall Sin, 2013, 49(11): 1399-1405.

Download:  PDF(4125KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Spray forming is a rapid solidification technology.The metal melts are atomized by inert gas into droplets of 10—100 μm in size, and fly at subsonic speed onto a deposition substrate during the spray forming process. The main features of spray formed material are free from macro-segregation, the well fine grain size and uniform distribution of the strengthening phase, leading to improvement of mechanical property at acceptable costs compared to the conventional techniques. Spray forming is an inexpensive alternative to powder metallurgy (PM) for the production of High-alloyed materials, finer microstructures and better mechanical properties than conventional materials. The spray forming route is trying to manufacture superalloy turbine components in the aerospace field. FGH4095 superalloy is generally used to manufacture powder metallurgy turbine disc for high working temperature of 650℃ in aerospace industries of China. The microstructure features of spray formed FGH4095 superalloy after isothermal forging and heat treatment process are studied in thework. Spray formed FGH4095 superalloy with grain size of 8 μm was prepared by 75% engineering deformation near isothermal forging under beginning temperature 1120℃ and finish temperature 1050℃. The tensile strengths (σb) of isothermal forged FGH4095 superalloy at room temperature and 650℃ reach 1565 and 1552 MPa, respectively, and the yield strengths (σ0.2) at room temperature and 650℃ reach 1231 and 1130 MPa, respectively. Meanwhile, the microstructure evolution was observed by OM, SEM and TEM. The results indicate that alloy microstructure are composed of fine recrystallization grains and larger deformed grains. Fine recrystallization grains  provide nucleation core, and then small—angle grain boundaries provide lattice distortion energy for static recrystallization. Compared with spray formed material, isothermal forged superalloy possesses fine tertiary γ′ phases dispersed in the matrix, cleaner boundary, crushed carbides, and less defects such as micropores, which has better mechanical properties.

Key words:  spray forming      isothermal forging      recrystallization      mechanical property     
Received:  25 July 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00442     OR     https://www.ams.org.cn/EN/Y2013/V49/I11/1399

[1] Cheng X, Dong J X, Zhang M C. World Steel Iron, 2011; 11(5): 43

(程茜, 董建新, 张麦仓. 世界钢铁, 2011; 11(5): 43)
[2] Guo J T, Zhou L Z, Yuan C, Hou J S, Qin X Z. Chin J Nonferrous Met, 2011; 21: 237
(郭建亭, 周兰章, 袁超, 侯介山, 秦学智. 中国有色金属学报, 2011; 21: 237)
[3] Xiao X, Xu H, Qin X Z, Guo Y A, Guo J T, Zhou L Z. Acta Metall Sin, 2011; 47: 1129
(肖旋, 许辉, 秦学智, 郭永安, 郭建亭, 周兰章. 金属学报, 2011; 47: 1129)
[4] Yao Z H, Dong J X, Zhang M C. Acta Metall Sin, 2011; 47: 1581
(姚志浩, 董建新, 张麦仓. 金属学报, 2011; 47: 1581)
[5] Wu K, Liu G Q, Hu B F, Zhang Y W, Tao Y, Liu J T. Rare Met Mater Eng, 2011; 40: 1966
(吴凯, 刘国权, 胡本芙, 张义文, 陶宇, 刘建涛. 稀有金属材料与工程, 2011; 40: 1966)
[6] Yuan C, Guo J T, Li G S, Zhou L Z, Ge Y C, Wang W. Chin J Nonferrous Met, 2011; 21: 733
(袁超, 郭建亭, 李谷松, 周兰章, 葛云超, 王巍. 中国有色金属学报, 2011; 21: 733)
[7] Xie X H, Yao Z K, Ning Y Q, Guo H Z, Tao Y, Zhang Y W. Rare Met Mater Eng, 2012; 41: 82
(谢兴华, 姚泽坤, 宁永权, 郭鸿镇, 陶宇, 张义文. 稀有金属材料与工程, 2012; 41: 82)
[8] Barratt M D, Dowson A L, Jacobs M H. Mater Sci Eng, 2004; A384: 69
[9] Alwin S, Volker U, Christoph E, Rainer K, Alfred K, Maria C M, Roland R,Wolfgang S, Domenico S, Dominique V. Mater Sci Eng, 2008; A477: 69
[10] Zhang G Q, Tian S F, Wang W X, Li Z. New Mater Ind, 2009; (11): 16
(张国庆, 田世藩, 汪武祥, 李周. 新材料产业, 2009; (11): 16)
[11] Mesquita R A, Barbosa C A. Mater Sci Eng, 2004; A383: 87
[12] Fei Y, Zhou X, Shi H S. Mater Charact, 2008; 59: 592
[13] Xiang J Z, Zhang Y, Fan W J, Wang P, He Y D. J Iron Steel Res Int, 2012; 19(2): 28
[14] Rao G A, Satyanarayana D V V. Mater Sci Technol, 2011; 27: 478
[15] Xu W Y, Li Z, Yuan H, Zhang G Q. Rare Met, 2011; 30: 392
[16] Butzer G, Bowen K. Adv Mater Proc, 1998; 153(3): 21
[17] Li Z, Zhang G Q, Tian S F. Acta Metall Sin, 2002; 38: 1186
(李周, 张国庆, 田世藩. 金属学报, 2002; 38: 1186)
[18] Liu N, Li Z, Zhang G Q. Rare Met, 2011; 30: 388
[19] Yuan H, Li Z, Zhang G Q, Xu W Y, Yao R P, Tian S F. J Mater Eng, 2009; (S1): 150
(袁华, 李周, 张国庆, 许文勇, 姚瑞平, 田世藩. 材料工程, 2009; (增刊1): 150)
[20] Guo W M, Wu J T, Zhang F G. J Iron Steel Res Inter, 2006; 13(5): 65
[21] Xie X S, Zhang L N, Zhang M C. 10th International Symposium on Superalloys. Warrendale, PA: 2004, 451
[22] Lu Z Z, Liu C L, Yue Z F. Mater Sci Eng, 2005; A395: 153
[23] Yin F Z, Hu B F, Jin K S, Jia C C. J Mater Eng, 2005; (10): 52
(尹法章, 胡本芙, 金开生, 贾成厂. 材料工程, 2005; (10): 52)
[24] Chen H M, Hu B F, Li H Y. Chin J Nonferrous Met, 2003; 13: 554
(陈焕铭, 胡本芙, 李慧英. 中国有色金属学报, 2003; 13: 554)
[25] Xu Y, Ge C C, Shu Q. J Iron Steel Res Int, 2013; 20(4): 61
[26] Xu Y, Shu Q, Guo B, Sun C S. J Iron Steel Res Int, 2013; 20(7): 59
[27] Guo J T. Superalloy Material Science, Preparation Technology. Beijing: Science Press, 2008: 68
(郭建亭. 高温合金材料学, 制备工艺. 北京: 科学出版社, 2008: 68)
[28] Li H Y, Song X P, Wang Y L. Rare Met Mater Eng, 2009; 38: 64
(李红宇, 宋西平, 王艳丽. 稀有金属材料与工程, 2009; 38: 64)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!