Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 996-1002    DOI: 10.3724/SP.J.1037.2013.00253
Current Issue | Archive | Adv Search |
PREPARATION AND OXIDATION BEHAVIOR OF ALUMINIZED COATING ON TC4 TITANIUM ALLOY VIA FRICTION STIR LAP WELDING METHOD
LUO Lei1), SHEN Yifu1), LI Bo1), HU Weiye 2)
1)College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100
2)Technology Research Institute of Nanjing Chenguang Group Co., Ltd., China Aerospace Science and Industry Corporation, Nanjing 210012
Cite this article: 

LUO Lei, SHEN Yifu, LI Bo, HU Weiye. PREPARATION AND OXIDATION BEHAVIOR OF ALUMINIZED COATING ON TC4 TITANIUM ALLOY VIA FRICTION STIR LAP WELDING METHOD. Acta Metall Sin, 2013, 49(8): 996-1002.

Download:  PDF(924KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The poor oxidation resistance of titanium and its alloys limits their use at elevated temperature. To solve this problem, a large amount of surface engineering techniques to produce anti-oxidation coatings on titanium alloys were utilized. In the present research, a solid-state processing method of friction stir lap welding (FSLW) was used to fabricate Al cladding or coating on the surface of TC4 titanium alloy, with lower cost and simpler operation which are still desirable for the coating preparation on titanium alloys. The lap joint structure was smartly transformed into an interface structure of coating. In this work, the Al coating with a thickness of 500μm was fabricated via multi-pass FSLW process using a slight plunge depth of tool-pin. The mechanical milling was used as a post-treatment for a suitable coating thickness. The oxidation testing was conducted at 700℃ under air atmosphere. The microstructure, chemical composition analysis and phase determinations were performed using SEM, EDS and XRD methods. The evolutions of interlayer under the high-temperature oxidation procedure were detailed. It was found that the Ti- rich interlayer, with a thickness of 60μm, had a typical structure of mixed layers. The sufficient Al coating thickness played an important role in preventing the inter diffusion of oxygen, while the oxidation and melting phenomenon of Al coating occurred. The abundant Al content in the Al coating upper the interlayer, with a significant thickness, also benefited to the anti-oxidation performance and forming of the beneath Ti/Al interlayer at a rare oxygen environment due to the obstacle effect of the Al layer to oxygen diffusion, which exerted a main role in oxidation prevention for titanium alloy. As a result, the phases of outer surface were mainly Al2O3, Al2Ti and Al3Ti. The gradient distribution characteristic of Ti/Al interface structure occurred after the oxidation testing.

Key words:  titanium alloy      friction stir welding      coating, high-temperature oxidation     
Received:  07 May 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00253     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/996

[1] Leng C Y, Zhou R, Zhang X, Lu D H, Liu H X.  Acta Metall Sin, 2009; 45: 764

(冷崇燕, 周荣, 张旭, 卢德宏, 刘洪喜. 金属学报, 2009; 45: 764)
[2] Xiong Y M, Zhu S L, Wang F H.  Acta Metall Sin, 2004; 40: 768
(熊玉明, 朱圣龙, 王福会. 金属学报, 2004; 40: 768)
[3] Gurrappa I.  Oxid Met, 2003; 59: 321
[4] Das D K, Trivedi S P.  Mater Sci Eng, 2004; A367: 225
[5] Astar E, Kayali E S, Cimenoglu H.  Surf Coat Technol, 2008; 202: 4583
[6] Li T F.  High Temperature Oxidation and Hot Corrosion of Metals. Beijing: Chemical Industry Press, 2004: 258
(李铁藩. 金属高温氧化和热腐蚀. 北京: 化学工业出版社, 2004: 258)
[7] Guleryuz H, Cimenoglu H.  J Alloys Compd, 2009; 472: 241
[8] Xiao J S, Xu G D.  Chin J Nonferrous Met, 1997; 7: 97
(萧今声, 许国栋. 中国有色金属学报, 1997; 7: 97)
[9] Chu M S, Wu S K.  Acta Mater, 2003; 51: 3109
[10] Xiong H P, Li X H, Mao W, Li J P, Ma W L, Chen Y Y.  Acta Metall Sin, 2003; 39: 66
(熊华平, 李晓红, 毛唯, 李建平, 马文利, 程耀永. 金属学报, 2003; 39: 66)
[11] Xi Y J, Lu J B, Wang Z X, He L L, Wang F H.  Trans Nonferrous Met Soc, 2006; 16: 511
[12] Xiong Y M, Zhu S L, Wang F H.  Corros Sci, 2008; 50: 15
[13] Das S, Datta S, Basu D, Das G C.  Ceram Int, 2009; 35: 1403
[14] Tian Y S, Chen C Z, Li S T, Huo Q H.  Appl Surf Sci, 2005; 242: 177
[15] Yang M R, Wu S K.  Acta Mater, 2002; 50: 691
[16] Charit I, Mishra R S.  Mater Sci Eng, 2003; A359: 290
[17] Liu F C, Ma Z Y.  Acta Metall Sin, 2008; 44: 319
(刘峰超, 马宗义. 金属学报, 2008; 44: 319)
[18] Jolu T L, Morgeneyer T F, Lorenzon A F G.  Sci Technol Weld Join, 2010; 15: 694
[19] Chen Y H, Ni Q, Ke L.  Trans Nonferrous Met Soc, 2012; 22: 299
[20] Chen Y C, Nakata K.  Mater Des, 2009; 30: 469
[21] Xiong J T, Li J L, Qian J W, Zhang F S, Huang W D.  Sci Technol Weld Join, 2012; 17: 196
[22] Chen Y H, Ni Q.  Trans China Weld Inst, 2011; 32: 73
(陈玉华, 倪泉. 焊接学报, 2011; 32: 73)
[23] Schuster J C, Palm M.  J Phase Equilib Diff, 2006; 27: 255
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[7] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[8] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[9] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[10] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[14] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[15] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
No Suggested Reading articles found!