Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method
LIU Xuxi1, LIU Wenbo1(), LI Boyan2, HE Xinfu3, YANG Zhaoxi1, YUN Di1
1.School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China 2.School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China 3.China Institute of Atomic Energy, Beijing 102413, China
Cite this article:
LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method. Acta Metall Sin, 2022, 58(7): 943-955.
As a pressure containment shell that supports all components in the nuclear reactor, reactor pressure vessel (RPV) is an irreplaceable core component during the whole life of nuclear power plant. Cu-riched particles precipitated in the early stage of radiation have significant effects on the mechanical property (such as radiation hardening and embrittlement) changes during the application of RPV steel. However, the Cu-riched precipitate with extremely small size (smaller than 2 nm) cannot be detected by the conventional experimental method, such as scanning electron microscope and transmission electron microscope. Hence, it is essential to calculate the critical nucleus size of Cu-riched precipitate under radiation in RPV steel. In this study, based on the constrained string method and phase-field theory, the critical nucleus size and minimum energy path of Cu-riched precipitate in Fe-Cu alloy under irradiation were calculated, and the minimum energy path, critical nucleus radius, and vacancy concentration distribution were also studied. The calculated results showed that both temperature and Cu concentration have a great influence on the energy path and critical nucleus cluster size of Cu-riched particles in Fe-Cu binary alloy. Temperature is the main factor influencing the energy path direction of the nucleus, while Cu concentration is the main factor influencing the growth rate of the nucleus radius. With the increase of temperature, the Cu concentration in the nucleus increases, while the time needed for the Cu-riched particles to reach its critical nucleus size decreases, and the energy barrier needed to be crossed also decreases. The distribution of Cu concentration also has a great influence on the distribution of vacancy during radiation. The vacancy concentration in the Cu-riched cluster is lower than that in the Fe-Cu matrix. The vacancy concentration decreased as the Cu concentration increased. The calculated results are consistent with the experimental results.
Fund: National Natural Science Foundation of China(U1830124);National Natural Science Foundation of China(11705137);China Postdoctoral Science Foundation(2019M663738);Innovative Scientific Program of China National Nuclear Corporation
About author: LIU Wenbo, associate professor, Tel: (029)82668948, E-mail: liuwenbo@xjtu.edu.cn
Fig.1 Schematics of saddle points in the nucleus evolutionary correction process (a) energy path saddle point diagram(b) energy path height contrast diagram
Element
α1
α2
α3
α4
β
γ
L
Cu
6242.2
122.833
-23.5902
-0.004761
-5.919
70000
38022.8
Fe
1225.7
124.134
-23.5143
-0.004397
-5.892
77358.5
38022.8
Table 1 Gibbs free energy parameters of Fe-Cu alloy[18,28,30]
Parameter
Value
Unit
κCu
5 × 10-15
J·m2·mol-1
κV
1 × 10-15
J·m2·mol-1
εCu
122.833
εV
124.134
Table 2 Interfacial energy correlation coefficients and eigenstrain coefficients of Fe-Cu alloy[28,29]
T / K
DFe / (m2·s-1)
DCu / (m2·s-1)
MFe / (mol·m·s·kg-1)
MCu / (mol·m·s·kg-1)
550
7.2 × 10-32
5.0 × 10-29
6.7 × 10-17
4.6 × 10-14
650
4.2 × 10-27
8.0 × 10-25
3.9 × 10-12
7.4 × 10-10
Table 3 Values of diffusion coefficients and mobility at different temperatures[29,35]
Fig.2 Energy paths of Fe-0.3%Cu alloy at 650 K and radiation intensity of 0.01 dpa/s (EP2 for energy path after 2-step-revolution, EP50 for energy path after 50-step-revolution. The abscissa represents the number of nucleus time states, the same in the figures below)
Fig.3 Cu concentration distributions and top views of cluster morphologies of critical nucleus (insets) of Fe-0.3%Cu alloy at 650 K and radiation intensity of 0.01dpa/s (a) cluster after 2-step-revolution (b) cluster after 50-step-revolution
Fig.4 Minimum energy path curves of Fe-0.3%Cu alloy after 50-step-revolution at 550 K (a), 600 K (b), 650 K (c), and 700 K (d)
Fig.5 Cu concentration distributions and top views of cluster morphologies of critical nucleus (insets) of Fe-0.3%Cu alloy after 50-step-revolution at 550 K (a), 600 K (b), 650 K (c), and 700 K (d)
T / K
RC / nm
CC / %
550
1.722
45.4355
600
1.762
47.8542
650
1.794
50.2122
700
1.821
52.5147
Table 4 Calculation results of critical nucleus radius (RC) and average Cu concentration in critical nucleus clusters (CC) of Fe-0.3%Cu alloy after 50-step-revolution at different temperatures
Fig.6 1D Cu concentration distribution curves in critical nucleus cluster of Fe-0.3%Cu alloy after 50-step-revolution at different temperatures
Fig.7 Minimum energy path curves of Fe-Cu alloy after 50-step-revolution with Cu concentrations of 0.05% (a), 0.1% (b), 0.3% (c), and 0.5% (d) at 650 K
Fig.8 Cu concentration distributions and top views of cluster morphologies of critical nucleus (insets) of Fe-Cu alloy after 50-step-revolution with Cu concentrations of 0.05% (a), 0.1% (b), 0.3% (c), and 0.5% (d) at 650 K
Alloy
RC / nm
CC / %
Fe-0.05Cu
1.190
26.9862
Fe-0.1Cu
1.292
35.3291
Fe-0.3Cu
1.762
47.8542
Fe-0.5Cu
2.014
52.8991
Table 5 Calculation results of RC and CC for different Fe-Cu alloys at 650 K after 50-step-revolution
Fig.9 1D Cu concentration distribution curves in critical nucleus clusters of Fe-Cu alloy with different Cu concentrations at 650 K after 50-step-revolution
Fig.10 Changes of cluster radius for Fe-Cu alloy after 50-step-revolution (a) 650 K for different Cu concentrations (b) 0.3%Cu concentration at different temperatures
Fig.11 Distributions of the increase of vacancy concentration at critical nucleus cluster state after 50-step-revolution at 650 K (a) Fe-0.3%Cu, 0.01 dpa/s (b) Fe-0.3%Cu, 0.05 dpa/s (c) Fe-0.5%Cu, 0.01 dpa/s (d) Fe-0.5%Cu, 0.05 dpa/s
Fig.12 Vacancy concentration distributions after 50-step-revolution at the different time (t) of nucleus of Fe-0.3%Cu alloy at 650 K and 0.01 dpa/s (a) t = 30 step (b) t = 60 step (c) t = 90 step (d) t = 120 step
t / step
RC / nm
Min.CV
Max.CV - Min.CV
Sum.CV
30
1.558
0.00102
8.63 × 10-5
17.149
60
1.763
0.00182
3.89 × 10-4
34.381
90
1.884
0.00229
8.92 × 10-4
51.535
120
2.039
0.00280
1.65 × 10-3
69.190
Table 6 Calculation results of partial parameters of critical nucleus clusters after 50-step-revolution at different t
1
Li Z C, Chen L. Irradiation embrittlement mechanisms and relevant influence factors of nuclear reactor pressure vessel steels [J]. Acta Metall. Sin., 2014, 50: 1285
Klueh R L, Harries D R. High-Chromium Ferritic and Martensitic Steels for Nuclear Applications [M]. West Conshohocken, PA: ASTM, 2001: 1
3
Grobner P J. The 885°F (475oC) embrittlement of ferritic stainless steels [J]. Metall. Trans., 1973, 4: 251
4
Sharma T, Bonagani S K, Kumar N N, et al. Detection of intergranular embrittlement of reactor pressure vessel steel by electrochemical method [J]. Mater. Sci. Eng., 2018, A725: 88
5
Bergner F, Gillemot F, Hernández-Mayoral M, et al. Contributions of Cu-rich clusters, dislocation loops and nanovoids to the irradiation-induced hardening of Cu-bearing low-Ni reactor pressure vessel steels [J]. J. Nucl. Mater., 2015, 461: 37
doi: 10.1016/j.jnucmat.2015.02.031
6
Lambrecht M, Malerba L, Almazouzi A. Influence of different chemical elements on irradiation-induced hardening embrittlement of RPV steels [J]. J. Nucl. Mater., 2008, 378: 282
doi: 10.1016/j.jnucmat.2008.06.030
7
Hernández-Mayoral M, Gómez-Briceño D. Transmission electron microscopy study on neutron irradiated pure iron and RPV model alloys [J]. J. Nucl. Mater., 2010, 399: 146
doi: 10.1016/j.jnucmat.2009.11.013
8
Ke H B, Wells P, Edmondson P D, et al. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels [J]. Acta Mater., 2017, 138: 10
doi: 10.1016/j.actamat.2017.07.021
9
Sun Z Y, Yang C, Liu W B. Phase field simulations of the sintering process of UO2 [J]. Acta Metall. Sin., 2020, 56: 1295
Kundin J, Sohaib H, Schiedung R, et al. Phase-field modeling of pores and precipitates in polycrystalline system [J]. Model. Simul. Mater. Sci. Eng., 2018, 26: 065003
11
Hötzer J, Seiz M, Kellner M, et al. Phase-field simulation of solid state sintering [J]. Acta Mater., 2019, 164: 184
doi: 10.1016/j.actamat.2018.10.021
12
Fan D, Chen L Q. Computer simulation of grain growth using a continuum field model [J]. Acta Mater., 1997, 45: 611
doi: 10.1016/S1359-6454(96)00200-5
13
Yin B Y. Ceramic Nuclear Fuel Process [M]. Harbin: Harbin Engineering University Press, 2016: 277
尹邦跃. 陶瓷核燃料工艺 [M]. 哈尔滨: 哈尔滨工程大学出版社, 2016: 277
14
Molnar D, Mukherjee R, Choudhury A, et al. Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, molecular dynamics and phase-field simulations [J]. Acta Mater., 2012, 60: 6961
doi: 10.1016/j.actamat.2012.08.051
15
Zhu J M, Zhang T L, Yang Y, et al. Phase field study of the copper precipitation in Fe-Cu alloy [J]. Acta Mater., 2019, 166: 560
doi: 10.1016/j.actamat.2019.01.009
16
Zhao B J, Zhao Y H, Sun Y Y, et al. Effect of Mn composition on the nanometer Cu-rich phase of Fe-Cu-Mn alloy by phase field method [J]. Acta Metall. Sin., 2019, 55: 593
Yan Z W, Shi S J, Li Y S, et al. Vacancy and interstitial atom evolution with the separation of the nanoscale phase in Fe-Cr alloys: Phase-field simulations [J]. Phys. Chem. Chem. Phys., 2020, 22: 3611
doi: 10.1039/C9CP06247E
18
Li B Y, Hu S Y, Li C L, et al. Simulations of irradiated-enhanced segregation and phase separation in Fe-Cu-Mn alloys [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 065007
19
Weinan E, Ren W Q, Vanden-Eijnden E. Simplified and improved string method for computing the minimum energy paths in barrier-crossing events [J]. J. Chem. Phys., 2007, 126: 164103
doi: 10.1063/1.2720838
20
Maragliano L, Fischer A, Vanden-Eijnden E, et al. String method in collective variables: Minimum free energy paths and isocommittor surfaces [J]. J. Chem. Phys., 2006, 125: 024106
21
Li B Y. Modelling and simulation in radiation induced defects in reactor pressure vessel steels [D]. Beijing: Tsinghua University, 2018
李博岩. 反应堆压力容器钢辐照损伤的计算模拟研究 [D]. 北京: 清华大学, 2018
22
Li B Y, Zhang L, Li C L, et al. Finding Non-classical critical nuclei and minimum energy path of Cu precipitates in Fe-Cu alloys [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 085006
23
Zhang L, Chen L Q, Du Q. Mathematical and numerical aspects of a phase-field approach to critical nuclei morphology in solids [J]. J. Sci. Comput., 2008, 37: 89
doi: 10.1007/s10915-008-9207-7
24
Zhang L, Chen L Q, Du Q. Diffuse-interface approach to predicting morphologies of critical nucleus and equilibrium structure for cubic to tetragonal transformations [J]. J. Comput. Phys., 2010, 229: 6574
doi: 10.1016/j.jcp.2010.05.013
25
Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations [J]. Comput. Phys. Commun., 1998, 108: 147
doi: 10.1016/S0010-4655(97)00115-X
26
Wang Y U. Computer modeling and simulation of solid-state sintering: A phase field approach [J]. Acta Mater., 2006, 54: 953
doi: 10.1016/j.actamat.2005.10.032
27
Cahn J W, Hilliard J E. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid [J]. J. Chem. Phys., 1959, 31: 688
doi: 10.1063/1.1730447
28
Biner S B. Programming Phase-Field Modeling [M]. Cham: Springer, 2017: 1
29
Hu S Y, Chen L Q. A phase-field model for evolving microstructures with strong elastic inhomogeneity [J]. Acta Mater., 2001, 49: 1879
doi: 10.1016/S1359-6454(01)00118-5
30
Peng H J, Xie Y Q, Liu S Q. Research on atomic states, physical properties and catalytic performance of Ru metal [J]. Sci. China, 2007, 50E: 177
31
Breeman M, Boerma D O. Migration of Cu adatoms on a Cu(100) surface, studied with low-energy ion scattering (LEIS) [J]. Surf. Sci., 1992, 269-270: 224
doi: 10.1016/0039-6028(92)91254-9
Ke J H, Reese E R, Marquis E A, et al. Flux effects in precipitation under irradiation—Simulation of Fe-Cr alloys [J]. Acta Mater., 2018, 164: 586
doi: 10.1016/j.actamat.2018.10.063
34
Makin M J, Minter F J. Irradiation hardening in copper and nickel [J]. Acta Metall., 1960, 8: 691
doi: 10.1016/0001-6160(60)90200-5
35
Odette G R, Yamamoto T, Klingensmith D. On the effect of dose rate on irradiation hardening of RPV steels [J]. Philos. Mag., 2005, 85: 779
doi: 10.1080/14786430412331319910
36
Mohapatra J N, Kamada Y, Kikuchi H, et al. Effect of Cr-rich phase precipitation on magnetic and mechanical properties of Fe-20% Cr alloy [J]. IEEE Trans. Magn., 2011, 47: 4356
doi: 10.1109/TMAG.2011.2155047
37
Nagano T, Enomoto M. Simulation of the growth of copper critical nucleus in dilute bcc Fe-Cu alloys [J]. Scr. Mater., 2006, 55: 223
doi: 10.1016/j.scriptamat.2006.04.015
38
Garcke H, Kwak D J C. On asymptotic limits of Cahn-Hilliard systems with elastic misfit [A]. Analysis, Modeling and Simulation of Multiscale Problems [M]. Berlin Heidelberg: Springer, 2006: 87
39
Koyama T, Onodera H. Computer simulation of phase decomposition in Fe-Cu-Mn-Ni quaternary alloy based on the phase-field method [J]. Metall. Trans., 2005, 46: 1187
40
Li Y L, Hu S Y, Zhang L, et al. Non-classical nuclei and growth kinetics of Cr precipitates in FeCr alloys during ageing [J]. Model. Simul. Mater. Sci. Eng., 2014, 22: 025002
41
Zhang C, Enomoto M, Yamashita T, et al. Cu precipitation in a prestrained Fe-1.5 wt pct Cu alloy during isothermal aging [J]. Metall. Mater. Trans., 2004, 35A: 1263
42
Saridakis E. Optimization of the critical nuclear size for protein crystallization: A note [J]. Acta Cryst., 2000, D56: 106