Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 421-427    DOI: 10.3724/SP.J.1037.2013.00002
Current Issue | Archive | Adv Search |
EFFECTS OF B AND P ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF GH984 ALLOY
XIAO Xuan1), ZHAO Haiqiang1,2), WANG Changshuai2), GUO Yongan2), GUO Jianting2),ZHOU Lanzhang2)
1) School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110168
2) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

XIAO Xuan, ZHAO Haiqiang, WANG Changshuai, GUO Yongan, GUO Jianting,ZHOU Lanzhang. EFFECTS OF B AND P ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF GH984 ALLOY. Acta Metall Sin, 2013, 29(4): 421-427.

Download:  PDF(5413KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Ni-Fe based superalloy GH984 with microalloying is fabricated by vacuum induction furnace and hot worked by hot forging and rolling. The effect of B and P microalloying on microstructure and mechanical properties of GH984 alloy was investigated by OM, SEM and TEM after standard heat treatment. The experiment results showed that the addition of B and P has no obvious effects on the microstructure of GH984 alloy which has precipitates of sphericalγ', Ti(C, N), blocky MC as well as discrete M23C6 distributing along grain boundary. Moreover, the addition of B and P has no obvious influence on the tensile strength at room temperature and 700℃. However, tensile ductility increases greatly at 700 ℃ after B and P doping. It is worth to note that B and P microslloying can improve the stress rupture life of the alloy significantly. For example, the rupture life at the condition of 700 ℃ and 350 MPa increases from initial 115.03 h to 984.15 h. Investigation on the microstucture of the creep samples exhibites that B and P could effectively improve the strength of grain boundary and the fractural model from intergranular fracture to intergranular/transgranular mixed fracture.

Key words:  GH984      heat-resistant superalloy      B and P microalloy      microstructure      tensile property      creep strength     
Received:  04 January 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00002     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/421

[1] Guo J T.  Acta Metall Sin, 2010; 46: 513


(郭建亭. 金属学报, 2010; 46: 513)

[2] Jφrgen B, Sven K, Blum R.  Energy, 2006; 31: 1439

[3] Zhao S Q, Xie X S, Smith G D, Patel S J.  Mater Chem Phys, 2005; 90: 275

[4] Jablonski P D, Hawk J A, Cowen C J, Maziasz P J.  J Metal, 2012; 64: 271

[5] Guo J T, Du X K.  Acta Metall Sin, 2005; 41: 1221

(郭建亭, 杜秀魁. 金属学报, 2005; 41: 1221)

[6] Wang S H, Du X K, Xu H Z, Yu C S, Guo J T, Hu Q W.  Acta Metall Sin, 1995; 31(suppl.): 137

(王淑荷, 杜秀魁, 许慧珍, 于长生, 郭建亭, 胡秋文. 金属学报, 1995; 31(增刊): 137)

[7] Zhang J, Luo Y S, Zhao Y S, Yang S, Jia Y L, Cui L L, Xu J W, Tang D Z.  J Aeronaut Mater, 2011; 31(suppl.): 90

(张剑, 骆宇时, 赵云松, 杨帅, 贾玉亮, 崔丽丽, 许剑伟, 唐定中. 航空材料学报, 2011; 31(增刊): 90)

[8] Sun W R, Guo S R, Lu D Z, Hu Z Q.  Metall Mater Trans, 1997; A28: 649

[9] Hu Z Q, Song H W, Guo S R, Sun W R.  J Mater Sci Technol, 2001; 17: 39901

[10] Xiao L, Chen D L, Chaturvedi M C.  Metall Mater Trans, 2005; A36: 2671

[11] Li N, Guo S R, Lu D Z, Sun W R, Meng X N, Hu Z Q.  Acta Metall Sin, 2003; 39: 1255

(李娜, 郭守仁, 卢德忠, 孙文儒, 孟晓娜, 胡壮麒. 金属学报, 2003; 39: 1255)

[12] Seah M P.  Acta Metall Mater, 1980; 28: 955

[13] Was G S, Sung J K, Angeliu T M.  Metall Mater Trans, 1992; A23: 3343

[14] Sun W R, Guo S R, Lu D Z, Hu Z Q.  Metall Mater Trans, 1997; A28: 649

[15] McKamey C G, Carmichael C A, Cao W D, Kennedy R L.  Scr Mater, 1998; 38: 485

[16] Sheng L Y, Zhang W, Guo J T, Wang Z S, Ovcharenko V E, Zhou L Z, Ye H Q.  Intermetallics, 2009; 17: 572

[17] Sheng L Y, Xi T F, Lai C, Guo J T, Zheng Y F.  Trans Nonferrous Met Soc China, 2012; 22: 489

[18] Sheng L Y, Xie Y, Xi T F, Guo J T, Zheng Y F, Ye H Q.  Mater Sci Eng, 2011; A528: 8324

[19] Sheng L Y, Yang F, Xi T F, Guo J T, Ye H Q.  Mater Sci Eng, 2012; A555: 131

[20] Zheng L, Xu T D, Deng Q, Si H, Dong J X.  Acta Metall Sin, 2007; 43: 893

(郑磊, 徐庭栋, 邓群, 司红, 董建新. 金属学报, 2007; 43: 893)

[21] Tytko D, Choi P, Klower J, Kostka A, Inden G, Raabe D.  Acta Mater, 2012; 60: 1731

[22] Wang L G, Wang C Y.  Mater Sci Eng, 1997; A234: 521

[23] Hu Z Q, Sun W R, Guo S R, Lu D Z.  Chin J Nonferrous Met, 2001; 11: 947

(胡壮麒, 孙文儒, 郭守仁, 卢德忠. 中国有色金属学报, 2001; 11: 947)

[24] Shu D L.  Mechanical Properties of Engineering Materials. Beijing: China Machine Press, 2010: 164

(束德林. 工程材料力学性能. 北京: 机械工业出版社, 2010: 164)

[25] Sheng L Y, Guo J T, Zhang W, Xie Y, Zhou L Z, Ye H Q.  Acta Metall Sin, 2009; 45: 1025

(盛立远, 郭建亭, 章炜, 谢亿, 周兰章, 叶恒强. 金属学报, 2009; 45: 1025)

[26] Sheng L Y, Yang F, Xi T F, Zheng Y F, Guo J T.  Intermetallics, 2012; 27: 14

[27] Sheng L Y, Yang F, Xi T F, Guo J T. Ye H Q.  Composites, 2012; 45B: 785

[28] Guo J T.  Material Science of Superalloy. Beijing: Science Press, 2008: 239

(郭建亭. 高温合金材料学(下册). 北京: 科学出版社, 2008: 239)

[29] Peng B C, Zhang H X, Hong J, Gao J Q, Zhang H Q, Li J F, Wang Q J.  Mater Sci Eng, 2010; A527: 4424
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!