quenching-partitioning-tempering (Q-P-T) process,mechanical property,welding joint,microstructure,refinement," /> quenching-partitioning-tempering (Q-P-T) process,mechanical property,welding joint,microstructure,refinement,"/> quenching-partitioning-tempering (Q-P-T) process,mechanical property,welding joint,microstructure,refinement,"/> 经新型Q-P-T工艺处理后Q235钢的组织与性能
Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 35-42    DOI: 10.3724/SP.J.1037.2012.00351
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND PROPERTIES OF Q235 STEEL TREATED BY NOVEL Q-P-T PROCESS
JIA Xiaoshuai1, ZUO Xunwei2, CHEN Nailu1, HUANG Jian1, TANG Xinhua1, RONG Yonghua1
1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240
Download:  PDF(1163KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper presents the mechanical properties and welding properties of Q235 steel with minimum yield strength of 235 MPa treated by a novel quenching-partitioning-tempering (Q-P-T) process.The experiments indicate that the strengths of Q-P-T treated Q235 steel (briefly called QPT235 steel) markedly raise compared with Q235 steel, and its yield strength and tensile strength are 435 and 615 MPa, respectively. In addition, the mechanical properties of the welding joint of QPT235 steel are markedly improved compared with Q235 steel when the same welding solder and process are performed for the steel with the two treatments, and the tensile strength and elongation of the former are about 532 MPa and 16.71%, respectively, while those of the latter are about 414 MPa and 12.4%. The microstructural characterization reveals two main factors resulting in the mechanical properties of QPT235 steel superior to those of Q235 steel: the grains of ferrite and interlamellar spacing of pearlite are both refined in the welding heat affected zone (HAZ), and a lot of widmanstatten structures in the welding joint of Q235 steel is avoided for QPT235 steel; there is a mixed microstructure of hard phases of martensite and bainite as well as remained austenite as soft phase in both base metal and HAZ, which replace parts of ferrite and pearlite in Q235 steel.

 
Key words:  quenching-partitioning-tempering (Q-P-T) process')" href="#">     
Received:  13 June 2012     
Service
E-mail this article quenching-partitioning-tempering (Q-P-T) process|mechanical property|welding joint|microstructure|refinement”. Please open it by linking:https://www.ams.org.cn/EN/abstract/abstract20983.shtml" name="neirong"> quenching-partitioning-tempering (Q-P-T) process|mechanical property|welding joint|microstructure|refinement">
Add to citation manager
E-mail Alert
RSS
Articles by authors
JIA Xiaoshuai
ZUO Xunwei
CHEN Nailu
HUANG Jian
TANG Xinhua
RONG Yonghua

Cite this article: 

JIA Xiaoshuai, ZUO Xunwei, CHEN Nailu, HUANG Jian, TANG Xinhua, RONG Yonghua. MICROSTRUCTURE AND PROPERTIES OF Q235 STEEL TREATED BY NOVEL Q-P-T PROCESS. Acta Metall Sin, 2013, 49(1): 35-42.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00351     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/35

 


[1] Xu Z Y. In: Xue Q J ed., The Perspective of Chemical Industry, Metallurgy and Materials,Beijing: Chemical Industry Publishing House, 2007: 403

(徐祖耀. 见: 薛群基主编, 中国工程院化工、冶金与材料工程学部第六届学术会议特邀报告会议论文集,北京: 化学与工业出版社, 2007: 403)

[2] Xu Z Y. Heat Treat, 2008; 23(2): 1

(徐祖耀. 热处理, 2008; 23(2): 1)

[3] Shang C J, Hu L J, Yang S W, Wang X M, Zhao Y T, He X L. Acta Metall Sin, 2005; 41: 471

(尚成嘉, 胡良均, 杨善武, 王学敏, 赵运堂, 贺信莱. 金属学报, 2005; 41: 471)

[4] Liu D S, Cheng B G, Chen Y Y. Acta Metall Sin, 2012; 48: 334

(刘东升, 程丙贵, 陈圆圆. 金属学报, 2012; 48: 334)

[5] Qi J J, Yang W Y, Sun Z Q. Acta Metall Sin, 2002; 38: 629

(齐俊杰, 杨王玥, 孙祖庆. 金属学报, 2002; 38: 629)

[6] Matlock D K, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels,

Korea: The Korean Institute of Metals and Materials, 2006: 774

[7] Mileiko S T, Speer J G. J Mater Sci, 1969; 4: 974

[8] Speer J G, Matlock D K, Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2661

[9] Sakuma Y. In: Baker M A ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive

Applications, Warrendale: Association for Iron-Steel Technology, 2004: 11

[10] Sugimoto K, Kobayshi M, Hashimoto S Y. Metall Trans, 1992; 23: 2085

[11] Speer J G, Assuncao F C R, Matlock D K, Edmonds D V. Mater Res, 2005; 8: 417

[12] Hsu T Y. Mater Sci Forum, 2007; 561: 2283

[13] Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261

[14] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H. Acta Metall Sin, 2011; 47: 489

(张柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董瀚. 金属学报, 2011; 47: 489)

[15] Zhong N, Wang X D, Wang L, Rong Y H. Mater Sci Eng, 2009; A506: 111

[16] Chen N L, Rong Y H. Chin Pat, 10562008.9, 2010

(陈乃录, 戎咏华. 中国专利, 10562008.9, 2010)

[17] Zhou S, Zhang L, Chen N L, Gu J F, Rong Y H. ISIJ Int, 2011; 51: 1688

[18] Liu H P, Lu X W, Jin X J. Mater Des, 2011; 32: 2269

[19] Wang C L. Metal Fracture Analysis. Harbin: Harbin University Press, 1998: 4

(王长利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 4)

[20] Peng Y, Wang A H, Xiao H J, Tian Z L. Acta Metall Sin, 2012; 48: 1281

(彭云, 王爱华, 肖红军, 田志凌. 金属学报, 2012; 48: 1281)

[21] Zhao L, Zhang X D, Chen W Z. Acta Metall Sin, 2005; 41: 392

(赵琳, 张旭东, 陈武柱. 金属学报, 2005; 41: 392)
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] YAO Xiaofei, WEI Jingpeng, LV Yukun, LI Tianye. Precipitation σ Phase Evoluation and Mechanical Properties of (CoCrFeMnNi)97.02Mo2.98 High Entropy Alloy[J]. 金属学报, 2020, 56(5): 769-775.
[6] LIANG Mengchao, CHEN Liang, ZHAO Guoqun. Effects of Artificial Ageing on Mechanical Properties and Precipitation of 2A12 Al Sheet[J]. 金属学报, 2020, 56(5): 736-744.
[7] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[8] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[9] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[10] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[11] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[12] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[13] CAO Yuhan,WANG Lilin,WU Qingfeng,HE Feng,ZHANG Zhongming,WANG Zhijun. Partially Recrystallized Structure and Mechanical Properties of CoCrFeNiMo0.2 High-Entropy Alloy[J]. 金属学报, 2020, 56(3): 333-339.
[14] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[15] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
No Suggested Reading articles found!