quenching-partitioning-tempering (Q-P-T) process,mechanical property,welding joint,microstructure,refinement," /> quenching-partitioning-tempering (Q-P-T) process,mechanical property,welding joint,microstructure,refinement,"/> quenching-partitioning-tempering (Q-P-T) process,mechanical property,welding joint,microstructure,refinement,"/> 经新型Q-P-T工艺处理后Q235钢的组织与性能
Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 35-42    DOI: 10.3724/SP.J.1037.2012.00351
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND PROPERTIES OF Q235 STEEL TREATED BY NOVEL Q-P-T PROCESS
JIA Xiaoshuai1, ZUO Xunwei2, CHEN Nailu1, HUANG Jian1, TANG Xinhua1, RONG Yonghua1
1. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240
Cite this article: 

JIA Xiaoshuai, ZUO Xunwei, CHEN Nailu, HUANG Jian, TANG Xinhua, RONG Yonghua. MICROSTRUCTURE AND PROPERTIES OF Q235 STEEL TREATED BY NOVEL Q-P-T PROCESS. Acta Metall Sin, 2013, 49(1): 35-42.

Download:  PDF(1163KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper presents the mechanical properties and welding properties of Q235 steel with minimum yield strength of 235 MPa treated by a novel quenching-partitioning-tempering (Q-P-T) process.The experiments indicate that the strengths of Q-P-T treated Q235 steel (briefly called QPT235 steel) markedly raise compared with Q235 steel, and its yield strength and tensile strength are 435 and 615 MPa, respectively. In addition, the mechanical properties of the welding joint of QPT235 steel are markedly improved compared with Q235 steel when the same welding solder and process are performed for the steel with the two treatments, and the tensile strength and elongation of the former are about 532 MPa and 16.71%, respectively, while those of the latter are about 414 MPa and 12.4%. The microstructural characterization reveals two main factors resulting in the mechanical properties of QPT235 steel superior to those of Q235 steel: the grains of ferrite and interlamellar spacing of pearlite are both refined in the welding heat affected zone (HAZ), and a lot of widmanstatten structures in the welding joint of Q235 steel is avoided for QPT235 steel; there is a mixed microstructure of hard phases of martensite and bainite as well as remained austenite as soft phase in both base metal and HAZ, which replace parts of ferrite and pearlite in Q235 steel.

 
Key words:  quenching-partitioning-tempering (Q-P-T) process')" href="#">     
Received:  13 June 2012     
Service
E-mail this article quenching-partitioning-tempering (Q-P-T) process|mechanical property|welding joint|microstructure|refinement”. Please open it by linking:https://www.ams.org.cn/EN/abstract/abstract20983.shtml" name="neirong"> quenching-partitioning-tempering (Q-P-T) process|mechanical property|welding joint|microstructure|refinement">
Add to citation manager
E-mail Alert
RSS
Collect articles0
Articles by authors
JIA Xiaoshuai
ZUO Xunwei
CHEN Nailu
HUANG Jian
TANG Xinhua
RONG Yonghua

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00351     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/35

 


[1] Xu Z Y. In: Xue Q J ed., The Perspective of Chemical Industry, Metallurgy and Materials,Beijing: Chemical Industry Publishing House, 2007: 403

(徐祖耀. 见: 薛群基主编, 中国工程院化工、冶金与材料工程学部第六届学术会议特邀报告会议论文集,北京: 化学与工业出版社, 2007: 403)

[2] Xu Z Y. Heat Treat, 2008; 23(2): 1

(徐祖耀. 热处理, 2008; 23(2): 1)

[3] Shang C J, Hu L J, Yang S W, Wang X M, Zhao Y T, He X L. Acta Metall Sin, 2005; 41: 471

(尚成嘉, 胡良均, 杨善武, 王学敏, 赵运堂, 贺信莱. 金属学报, 2005; 41: 471)

[4] Liu D S, Cheng B G, Chen Y Y. Acta Metall Sin, 2012; 48: 334

(刘东升, 程丙贵, 陈圆圆. 金属学报, 2012; 48: 334)

[5] Qi J J, Yang W Y, Sun Z Q. Acta Metall Sin, 2002; 38: 629

(齐俊杰, 杨王玥, 孙祖庆. 金属学报, 2002; 38: 629)

[6] Matlock D K, Speer J G. In: Lee H C ed., The 3rd Int Conf on Advanced Structural Steels,

Korea: The Korean Institute of Metals and Materials, 2006: 774

[7] Mileiko S T, Speer J G. J Mater Sci, 1969; 4: 974

[8] Speer J G, Matlock D K, Cooman B C, Schroth J G. Acta Mater, 2003; 51: 2661

[9] Sakuma Y. In: Baker M A ed., Proc Int Conf on Advanced High Strength Sheet Steels for Automotive

Applications, Warrendale: Association for Iron-Steel Technology, 2004: 11

[10] Sugimoto K, Kobayshi M, Hashimoto S Y. Metall Trans, 1992; 23: 2085

[11] Speer J G, Assuncao F C R, Matlock D K, Edmonds D V. Mater Res, 2005; 8: 417

[12] Hsu T Y. Mater Sci Forum, 2007; 561: 2283

[13] Wang X D, Zhong N, Rong Y H, Xu Z Y. J Mater Res, 2009; 24: 261

[14] Zhang K, Xu W Z, Guo Z H, Rong Y H, Wang M Q, Dong H. Acta Metall Sin, 2011; 47: 489

(张柯, 许为宗, 郭正洪, 戎咏华, 王毛球, 董瀚. 金属学报, 2011; 47: 489)

[15] Zhong N, Wang X D, Wang L, Rong Y H. Mater Sci Eng, 2009; A506: 111

[16] Chen N L, Rong Y H. Chin Pat, 10562008.9, 2010

(陈乃录, 戎咏华. 中国专利, 10562008.9, 2010)

[17] Zhou S, Zhang L, Chen N L, Gu J F, Rong Y H. ISIJ Int, 2011; 51: 1688

[18] Liu H P, Lu X W, Jin X J. Mater Des, 2011; 32: 2269

[19] Wang C L. Metal Fracture Analysis. Harbin: Harbin University Press, 1998: 4

(王长利. 金属断口分析. 哈尔滨: 哈尔滨工业大学出版社, 1998: 4)

[20] Peng Y, Wang A H, Xiao H J, Tian Z L. Acta Metall Sin, 2012; 48: 1281

(彭云, 王爱华, 肖红军, 田志凌. 金属学报, 2012; 48: 1281)

[21] Zhao L, Zhang X D, Chen W Z. Acta Metall Sin, 2005; 41: 392

(赵琳, 张旭东, 陈武柱. 金属学报, 2005; 41: 392)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[12] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
No Suggested Reading articles found!