X70 steel,AC corrosion,electrochemistry,stray current,local corrosion," /> X70 steel,AC corrosion,electrochemistry,stray current,local corrosion,"/> X70 steel,AC corrosion,electrochemistry,stray current,local corrosion,"/> 交流电对X70钢表面形态及电化学行为的影响
Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (1): 43-50    DOI: 10.3724/SP.J.1037.2012.00361
Current Issue | Archive | Adv Search |
EFFECTS OF ALTERNATING CURRENT ON X70 STEEL MORPHOLOGY AND ELECTROCHEMICAL BEHAVIOR
YANG Yan, LI Zili, WEN Chuang
College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580
Cite this article: 

YANG Yan, LI Zili, WEN Chuang. EFFECTS OF ALTERNATING CURRENT ON X70 STEEL MORPHOLOGY AND ELECTROCHEMICAL BEHAVIOR. Acta Metall Sin, 2013, 49(1): 43-50.

Download:  PDF(1329KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

 

Alternating current (AC) corrosion is a significant problem to metal structures in close proximity to alternating current carrying conductors. While for direct current (DC) interference there is large agreement on protection criteria to be used for corrosion mitigation, but the mechanism and relationship between AC density and corrosion rate are still not clear, although some studies have been carried out for many years. In this work, electrochemical methods, including open curves, polarization curves and electrochemical impedance spectra (EIS) on X70 steel samples, were performed in soil-simulating conditions at various AC current densities from 0 to about 100 A/m2. The corrosion behavior and mechanism were discussed based on the electrochemical, XRD, stereo microscope and SEM results. The simulation experiment was set up to predict the effects of AC current density on corrosion potential and corrosion rates. The results indicate that the corrosion potential and corrosion rate increases with the rise of AC current density. When the alternating current goes across the X70 steel, its surface suffers from an obvious corrosion potential accompanied with the bubble crop up. It's because the hydrogen and oxygen reduction reactions happened on the surface of X70 steel. There is only one capacitive reactance arc on EIS at the corrosion potential under a low current density interference. Warburg impedance appears in a higher alternating current density of the low frequency area. It shows that the corrosion process of surface is controlled by diffusion. The amount of AC corrosion can be generally expressed as a percentage of the amount of DC corrosion with the equivalent corrosive effect. Alternating current causes less than 1% of the corrosion caused by the equivalent direct current. The X70 steel is corroded uniformly in the early AC interference, but corrosion pits appear gradually on the surface of X70 steel with the extension of time. Especially in the high current density interference, the pitting is more likely to occur. Furthermore, the higher current density increases pitting tendentiousness and depth. Alternating current has a major impact on metal polarization, and the asymmetry of positive and negative half cycle induces corrosion at alternating current interference. Alternating current could generate an “oscillating” effect in the metal/medium interface.
 
Key words:  X70 steel')" href="#">     
Received:  18 June 2012     
Service
E-mail this article X70 steel|AC corrosion|electrochemistry|stray current|local corrosion”. Please open it by linking:https://www.ams.org.cn/EN/abstract/abstract20984.shtml" name="neirong"> X70 steel|AC corrosion|electrochemistry|stray current|local corrosion">
Add to citation manager
E-mail Alert
RSS
Articles by authors
YANG Yan
LI Zili
WEN Chuang

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00361     OR     https://www.ams.org.cn/EN/Y2013/V49/I1/43

 


[1] Buchler M, Schoneich H G, Stalder F.15th Biennial Joint Technical Meeting on Pipeline Research, Orlando, PRCI: 2005: 16

[2] Wakelin R G, Gummov R A, Segall S M. Corrosion 1998, Houston: NACE, 1998: 565

[3] Buchler M, Stalder F, Schoneich H G. Ceocor-2004 International Colloquium, Sector A, Dresden: Ceocor, 2004: 59

[4] Goidanich S, Lazzari L, Ormellese M, Pedeferri M P.16th International Corrosion Congress, Beijing: CSCP, 2005: 16

[5] Linhardt P, Ball G. Corrosion 2006, Houston: NACE, 2006: 160

[6] Li Z L, Yang Y. CIESC J, 2011; 62: 1790

(李自力, 杨燕. 化工学报, 2011; 62: 1790)

[7] Li Z L, Yang Y. Acta Petrol Sin, 2012; 33: 164

(李自力, 杨燕. 石油学报, 2012; 33: 164)

[8] Du C Y, Cao B, Wu Y S. Corros Prot, 2009; 30: 655

(杜晨阳, 曹备, 吴荫顺. 腐蚀与防护, 2009; 30: 655)

[9] Wu Y S, Cao B. Cathodic and Anodic Protection-Principles, Techniques and Engineering Applications.

Beijing: China Petrochemical Press, 2007: 212

(吴荫顺, 曹备. 阴极保护和阳极保护—原理、技术及工程应用. 北京: 中国石化出版社, 2007: 212)

[10] Biase L D, Fumei O, Cigna R. Corrosion 2010, Houston: NACE, 2010: 108

[11] Goidanich S, Lazzari L, Ormellese M. Corros Sci, 2009; 52: 916

[12] Fu A Q, Cheng Y F. Corros Sci, 2010; 52: 612

[13] Jiang Z T, Du Y X, Dong L, Lu M X. Acta Metall Sin, 2011; 47: 997

(姜子涛, 杜艳霞, 董亮, 路民旭. 金属学报, 2011; 47: 997)

[14] Weng Y J, Wang N. J Chin Soc Corrro Prot, 2011; 31: 270

(翁永基, 王宁. 中国腐蚀与防护学报, 2011; 31: 270)

[15] Xu L Y, Su X, Yin Z X, Tang Y H, Cheng Y F. Corros Sci, 2012; 61: 215

[16] Gellings P J. Electrochim Acta, 1962; 7: 19

[17] Xiao H, Lalvani S B. J Electrochem Soc, 2008; 155: C69

[18] Zhang R, Vairavanathan P R, Lalvani S B. Corros Sci, 2008; 50: 1664

[19] Li M C, Cheng Y F. Electrochim Acta, 2007; 52: 8111

[20] Gu B, Luo J, Mao X. Corrosion 1990, Houston: NACE, 1990: 96

[21] Zhao W M, Wang Y. Acta Metall Sin, 2008; 44: 1125

(赵为民, 王勇. 金属学报, 2008; 44: 1125)

[22] Cao C N. Introduction of Electrochemical Impedence Spectra. Beijing: Science Press, 2002: 76

(曹楚南. 电化学阻抗谱导论. 北京: 科学出版社, 2002: 76)

[23] Liu Z Y, Dong C F, Jia Z J, Li X G. Acta Metall Sin, 2011; 47: 1009

(刘志勇, 董超芳, 贾志军, 李晓刚. 金属学报, 2011; 47: 1009)

[24] Li D G, Zhu J W, Zheng M S, Feng Y R, Bai Z Q. Acta Metall Sin, 2008; 44: 739

(李党国, 朱杰武, 郑茂盛, 冯耀荣, 白真权. 金属学报, 2008; 44: 739)

[25] Nielsen L V, Nielsen K V, Baumgarten B. Corrosion 2004, Houston: NACE, 2005: 211

[26] Nielsen L V. Corrosion 2005, Houston: NACE, 2005: 188
[1] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[2] Shaopeng QU, Baizhang CHENG, Lihua DONG, Yansheng YIN, Lijing YANG. Corrosion Behavior of 2205 Steel in Simulated Hydrothermal Area[J]. 金属学报, 2018, 54(8): 1094-1104.
[3] Hui ZHANG, Yanxia DU, Wei LI, Minxu LU. Investigation on AC-Induced Corrosion Behavior and Product Film of X70 Steel in Aqueous Environment with Various Ions[J]. 金属学报, 2017, 53(8): 975-982.
[4] Suqiang ZHANG,Hongyun ZHAO,Fengyuan SHU,Guodong WANG,Wenxiong HE. Effect of Welding Thermal Cycle on Corrosion Behavior of Q315NS Steel in H2SO4 Solution[J]. 金属学报, 2017, 53(7): 808-816.
[5] Linyuan HAN, Xuan LI, Chenglin CHU, Jing BAI, Feng XUE. Corrosion Behavior of AZ31 Magnesium Alloy in Dynamic Conditions[J]. 金属学报, 2017, 53(10): 1347-1356.
[6] Yongchang QING,Zhiwei YANG,Jun XIAN,Jin XU,Maocheng YAN,Tangqing WU,Changkun YU,Libao YU,Cheng SUN. CORROSION BEHAVIOR OF Q235 STEEL UNDER THE INTERACTION OF ALTERNATING CURRENT AND MICROORGANISMS[J]. 金属学报, 2016, 52(9): 1142-1152.
[7] CAO Fengting, WEI Jie, DONG Junhua, KE Wei. CORROSION BEHAVIOR OF 20SiMn STEEL REBAR IN CARBONATE/BICARBONATE SOLUTIONS WITH THE SAME pH VALUE[J]. 金属学报, 2014, 50(6): 674-684.
[8] SHENG Hai, DONG Chaofang, XIAO Kui, LI Xiaogang. LOCALIZED ELECTROCHEMICAL CHARACTERIZATION OF HIGH STRENGTH ALUMINIUM ALLOY AT THE CRACK TIP IN 3.5NaCl SOLUTION[J]. 金属学报, 2012, 48(4): 414-419.
[9] Masanori Naitoh CHEN Yaodong Shunsuke Uchida Hidetoshi Okada. ANALYSIS AND VALIDATION OF PIPE WALL THINNING DUE TO FLOW ACCELERATED CORROSION[J]. 金属学报, 2011, 47(7): 784-789.
[10] SUN Min XIAO Kui DONG Chaofang LI Xiaogang. ELECTROCHEMICAL BEHAVIORS OF ULTRA HIGH STRENGTH STEELS WITH CORROSION PRODUCTS[J]. 金属学报, 2011, 47(4): 442-448.
[11] WANG Liwei DU Cuiwei LIU Zhiyong ZENG Xiaoxiao LI Xiaogang. INFLUENCES OF Fe3C AND PEARLITE ON THE ELECTROCHEMICAL CORROSION BEHAVIORS OF LOW CARBON FERRITE STEEL[J]. 金属学报, 2011, 47(10): 1227-1232.
[12] HAN En-Hou WANG Jianqiu WU Xinqiang KE Wei. CORROSION MECHANISMS OF STAINLESS STEEL AND NICKEL BASE ALLOYS IN HIGH TEMPERATURE HIGH PRESSURE WATER[J]. 金属学报, 2010, 46(11): 1379-1390.
[13] XU Qun-Jie. Photoelectrochemical Study of the Corrosion and Inhibition on Copper[J]. 金属学报, 2008, 44(11): 1360-1365 .
[14] WU Weitao; ZHANG Jianqing; ZENG Chaoliu; NIU Yan; SHEN weiliang (Institute of Corrosion and Protection of Metals; Corrosion Science Laboratory; Academia Sinica; Shenyang). HOT CORROSION OF Ni_3AI-0.2B INTERMETALLIC COMPOUND IN MOLTEN NaCI-(Na, K)_2SO_4[J]. 金属学报, 1992, 28(7): 60-64.
[15] YANG Qiqin;LIU Guankun;TONG Yexiang;LIANG Guangchao Zhongshan University; Guangzhou. ELECTROCHEMICAL ALLOYING OF Ni IN MOLTEN NaCl-KCl-PrCl_3[J]. 金属学报, 1992, 28(3): 65-68.
No Suggested Reading articles found!