Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (8): 935-940    DOI: 10.3724/SP.J.1037.2011.00650
论文 Current Issue | Archive | Adv Search |
EFFECT OF Nb ON THE MICROSTRUCTURE AND PROPERTIES OF SPRAY FORMED M3 HIGH SPEED STEEL
YU Yipeng 1, HUANG Jinfeng 1, CUI Hua 2, CAI Yuanhua 1, ZHANG Jishan 1
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
Cite this article: 

YU Yipeng HUANG Jinfeng CUI Hua CAI Yuanhua ZHANG Jishan. EFFECT OF Nb ON THE MICROSTRUCTURE AND PROPERTIES OF SPRAY FORMED M3 HIGH SPEED STEEL. Acta Metall Sin, 2012, 48(8): 935-940.

Download:  PDF(1899KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Spray forming with a short process chains has been proven to be a powerful tool for the production of high–alloyed materials. Niobium, as a strong former for the carbide, will mainly form primary MC carbides, such as NbC, which can be formed via the reaction between Nb and C atoms at the beginning of solidification, and it can act as the inoculants and refine the cast structure of steel which can mainly form primary MC carbides. M3 high speed steel with or without Nb addition were prepared via spray forming. The effect of Nb on the microstructure of spray formed M3 high speed steel was investigated by SEM, EDX and XRD methods; the friction performances of these two steels were studied by SRV high temperature tribometer and 3D white–light interfering profilometer. The results show that the amount of primary MC carbides can increase sharply while the reduction of the amount of primary M2C due to the substitution of 2% Nb for 1% V (mass fraction) in M3 high speed steel. For the high cooling rate during the spray forming, the primary MC carbides can be refined and dispersed. Large number of primary MC carbides can improve the abrasive wear resistance of M3 high speed steel, but cannot enhance its oxidation resistance; M3 high speed steels containing Nb possess high tempering resistance.
Key words:  spray forming       high speed steel       microstructure      Nb      wear resistance     
Received:  21 October 2011     
ZTFLH: 

TG142.1

 
Fund: 

Supported by National Basic Research Program of China (No.2011CB606303)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00650     OR     https://www.ams.org.cn/EN/Y2012/V48/I8/935

[1] Dobrza´nski L A, Zarychta A, Ligarski M. J Mater Process Technol, 1997; 63: 531

[2] Kheirandis S, Kharrazi Y H K, Mirdamadi S. ISIJ Int, 1997; 37: 721

[3] Dobrza´nski L A, Zarychta A, Ligarski M. J Mater Process Technol, 1995; 53: 109

[4] Dobrza´nski L A, Zarychta A. J Mater Process Technol, 1998; 77: 180

[5] Zhang Y, Ma D S, Liu J H, Chen Z Z, Yong Q L. Spec Steel, 2007; 28(3): 44

(张永, 马党参, 刘建华, 陈再枝, 雍岐龙. 特殊钢, 2007; 28(3): 44)

[6] Najafi H, Rassizadehghani J, Asgari S. Mater Sci Eng, 2008; A486: 1

[7] Chakraborty K, Chattopadhyay A B, Chakrabarti A K. J Mater Process Technol, 2003; 141: 404

[8] Shanmugam S, Misra R D K, Hartmann J, Jansto S G. Mater Sci Eng, 2006; A441: 215

[9] Shanmugam S, Misra R D K, Mannering T, Panda D, Jansto S G. Mater Sci Eng, 2006; A437: 436

[10] Wang Y W, Feng C, Xu F Y, Bai B Z, Fang H S. J Iron Steel Res Int, 2010; 17(1): 49

[11] Feng C, Fang H S, Zheng Y K, Bai B Z. J Iron Steel Res Int, 2010; 17(4): 53

[12] Yuan Z X, Song S H, Wang Y H, Liu J, Guo A M. Mater Lett, 2005; 59: 2048

[13] Guo A M, Misra R D K, Xu J Q, Guo B, Jansto S G. Mater Sci Eng, 2010; A527: 3886

[14] Riedl R, Karag¨oz S, Fishmeister H, Jeglitsh F. Steel Res, 1987; 58: 339

[15] Nov´ak P, Vojtˇech D, ˇSer´ak J, Knotek V, B´artov´a B. Surf Coat Technol, 2006; 201: 3342

[16] Nov´ak P, Vojtˇech D, ˇSer´ak J. Surf Coat Technol, 2006; 200: 5229

[17] Nov´ak P, Vojtˇech D, ˇSer´ak J. Mater Sci Eng, 2005; A393: 286

[18] Grant P S. Prog Mater Sci, 1995; 39: 497

[19] Grant P S. Metall Mater Trans, 2007; 38A: 1520

[20] Zhang J G, Xu H B, Shi H S, Wu J S, Sun D S. J Mater Process Technol, 2001; 111: 79

[21] Mesquita R A, Barbosa C A. Mater Sci Eng, 2004; A383: 87

[22] Schulz A, Uhlenwinkel V, Escher C, Kohlmann R, Kulm-burg A,Montero M C, Rabitsch R, Sch¨utzenh¨oferW, Stocchid, Viale D. Mater Sci Eng, 2008; A477: 69

[23] Ul'shin V I, Gogaev K A, Ul'shin S V. Pow d er Metall Met Ceram , 2007; 46: 123

[24] Ernst I C, Duh D. J Mater Sci, 2004; 39: 6835

[25] Yan F, Xu Z, Shi H S, Fan J F. Mater Charact, 2008; 59: 592

[26] Yu Y P, Huang F, Cui H, Cai Y H, Zhang J S. A d v Mater Res, 2012; 418–420: 3

[27] Chi H X, Ma D S, Liu J H, Chen Z Z, Yong Q L. Acta Metall Sin, 2010; 46: 206

(迟宏宵, 马党参, 刘建华, 陈再枝, 雍岐龙. 金属学报, 2010; 46: 206)

[28] Karag¨oz S, Fischmeister H. Metall Mater Trans, 1988; 19A: 1395
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!