Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 579-586    DOI: 10.3724/SP.J.1037.2012.00087
论文 Current Issue | Archive | Adv Search |
LI Haiqing1,2, GONG Jun2, SUN Chao2
1. Aerospace Research Institute of Materials and Processing Technology, China Academy of Launch Vehicle Technology,Beijing 100076
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,
Download:  PDF(2832KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The orthorhombic Ti2AlNb alloys have received significant attentions because of their good physical and mechanical properties. However, these orthorhombic alloys face problems of oxidation at high temperature, especially above 700 ℃. To solve these problems, the use of surface coatings is an efficient way. However, when single coating was applied on the orthorhombic Ti2AlNb alloys, problems of serious interdiffusion and interfacial reaction were encountered, which resulted in worse oxidation behavior and deteriorated mechanical properties. To obtain good oxidation protection of NiCrAlY coating on the orthorhombic Ti2AlNb alloy, an efficient diffusion barrier should be added. In this study, NiCrAlY/Al--Al2O3 double--coatings were deposited on the orthhombic--Ti2AlNb alloy by arc ion plating. NiCrAlY coating acted as oxidation resistance coating and Al--Al2O3 coating acted as diffusion barrier. By introducing metallic Al in the Al2O3 film, the problem of coefficient of thermal expansion (CTE) mismatch between film and alloy substrate might be mitigate. Also metallic Al in the Al2O3 film can act as diffusion path which permits proper interdiffusion to improve the interface adhesion. The oxidation and interdiffusion behavior of specimens with and without diffusion barriers were investigated by oxidation tests at 900 ℃. The results indicated that substantial interdiffusion and rapid oxidation degradation occurred in the coated specimens without diffusion barrier. With Al--Al2O3 diffusion barriers, deferred interdiffusion and improved oxidation resistance were observed. Different contents of metallic Al in the Al2O3 coatings had different efficiency of diffusion barrier, and also affected interfacial mechanical properties. Among these NiCrAlY/Al--Al2O3 coatings, double--coating containing 1Al--Al2O3 diffusion barrier exhibited best performance. Coefficient of diffusion hindering was used to compare and quantify the efficiency of the diffusion barriers.
Key words:  coating      diffusion barrier      oxidation      interdiffusion      O-Ti2AlNb alloy     
Received:  22 February 2012     

National Natural Science Foundation of China

Corresponding Authors:      E-mail:

Cite this article: 


URL:     OR

[1] Leyens C, Peters M.  Titanium and Titanium Alloys. Weinheim: Wiley--VCH, 2003; 52

[2] Kumpfert J.  Adv Eng Mater, 2001; 3: 851

[3] Ralison A, Dettenwanger F, Schutze M.  Mater High Temp, 2003; 20: 607

[4] Christoph L.  Oxid Met, 1999; 52: 475

[5] Ralison A, Dettenwanger F, Schutze M.  Mater Corros, 2000; 51: 317

[6] Dudziak T, Du H L, Datta P K, Wilson A, Ross I M, Moser M, Braun R.  Corros Sci, 2009; 51: 1189

[7] Leyens C, Braun R, Frohlich M, Hovsepian P E.  JOM, 2006; 58: 17

[8] Cvijovic I, Jovanovic M T, Perusko D.  Corros Sci, 2008; 50: 1919

[9] Xiong Y M, Zhu S L, Wang F H.  Surf Coat Technol, 2005; 197: 322

[10] Braun R, Leyens C.  Mater High Temp, 2005; 22: 437

[11] Braun R, Frohlich M, Leyens C, Renusch D.  Oxid Met, 2009; 71: 295

[12] Tang Z L, Wang F H, Wu W T.  Surf Coat Technol, 1998; 110: 57

[13] Zhang K, Wang Q M, Sun C, Wang F H.  Corros Sci, 2007; 49: 3598

[14] Goward G W.  Surf Coat Technol, 1998; 108: 73

[15] Sivakumar R, Mordike B L.  Surf Coat Technol, 1989; 37: 139

[16] Wang Q M, Zhang K, Gong J, Cui Y Y, Sun C, Wen L S.  Acta Mater, 2007; 55: 1427

[17] Muller J, Schierling M, Zimmermann E, Neuschutz D. Surf Coat Technol, 1999; 120--121: 16

[18] Wang Q M, Wu Y N, Ke P L, Sun C, Huang R F, Wen L S.  Acta Metall Sin, 2004; 40: 83

     (王启民, 吴颖娜, 柯培玲, 孙超, 黄荣芳, 闻立时. 金属学报, 2004; 40: 83)

[19] Li H Q, Wang Q M, Jiang S M, Gong J, Sun C.  Corros Sci, 2010; 52: 1668

[20] Knotek O, Lugscheider E, Loffler F, Beele W.  Surf Coat Technol, 1994; 68--69: 22

[21] Yao Y, Li W Z, Wang Q M, Gong J, Sun C, Li J B.  Acta Metall Sin, 2008; 44: 876

     (姚勇, 李伟洲, 王启民, 宫骏, 孙 超, 李家宝. 金属学报, 2008; 44: 876)
[1] WANG Xiaobo, WANG Yongzhe, CHENG Xudong, JIANG Rong. Thermal Stability of AlCrON-Based Solar Selective Absorbing Coating in Air[J]. 金属学报, 2021, 57(3): 327-339.
[2] WU Yucheng, GAO Zhiqiang, XU Guangqing, LIU Jiaqin, XUAN Haicheng, LIU Youhao, YI Xiaofei, CHEN Jingwu, HAN Peide. Current Status and Challenges in Corrosion and Protection Strategies for Sintered NdFeB Magnets[J]. 金属学报, 2021, 57(2): 171-181.
[3] YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang. Review: Mechanism of Reactive Element Effect—Oxide Pegging[J]. 金属学报, 2021, 57(2): 182-190.
[4] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[5] LI Tianxin, LU Yiping, CAO Zhiqiang, WANG Tongmin, LI Tingju. Opportunity and Challenge of Refractory High-Entropy Alloys in the Field of Reactor Structural Materials[J]. 金属学报, 2021, 57(1): 42-54.
[6] YI Hongliang,CHANG Zhiyuan,CAI Helong,DU Pengju,YANG Dapeng. Strength, Ductility and Fracture Strain ofPress-Hardening Steels[J]. 金属学报, 2020, 56(4): 429-443.
[7] YAO Meiyi,ZHANG Xingwang,HOU Keke,ZHANG Jinlong,HU Pengfei,PENG Jianchao,ZHOU Bangxin. The Initial Corrosion Behavior of Zr-0.75Sn-0.35Fe-0.15Cr Alloy in Deionized Water at 250 ℃[J]. 金属学报, 2020, 56(2): 221-230.
[8] LIU Yanmei, WANG Tiegang, GUO Yuyao, KE Peiling, MENG Deqiang, ZHANG Jifu. Design, Preparation and Properties of Ti-B-N Nanocomposite Coatings[J]. 金属学报, 2020, 56(11): 1521-1529.
[9] GAO Bowen, WANG Meihan, YAN Maocheng, ZHAO Hongtao, WEI Yinghua, LEI Hao. Electrochemical Preparation and Corrosion Resistance of PEDOT Coatings on Surface of 2024 Aluminum Alloy[J]. 金属学报, 2020, 56(11): 1541-1550.
[10] LI Kejian, ZHANG Yu, CAI Zhipeng. Fracture Location Shift of Dissimilar Metal Welds Under Coupled Thermal-Stress Effect[J]. 金属学报, 2020, 56(11): 1463-1473.
[11] ZHANG Yu, LOU Liyan, XU Qinglong, LI Yan, LI Changjiu, LI Chengxin. Microstructure and Wear Resistance of Ni-Based WC Coating by Ultra-High Speed Laser Cladding[J]. 金属学报, 2020, 56(11): 1530-1540.
[12] GONG Shengkai, SHANG Yong, ZHANG Ji, GUO Xiping, LIN Junpin, ZHAO Xihong. Application and Research of Typical Intermetallics-Based High Temperature Structural Materials in China[J]. 金属学报, 2019, 55(9): 1067-1076.
[13] Ling LI,Shenglian YAO,Xiaoli ZHAO,Jiajia YANG,Yexi WANG,Luning WANG. Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy[J]. 金属学报, 2019, 55(8): 1008-1018.
[14] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[15] Changshuai WANG,Lili GUO,Liying TANG,Rongcan ZHOU,Jianting GUO,Lanzhang ZHOU. Oxidation Behavior of GH984G Alloy in Steam at 700 [J]. 金属学报, 2019, 55(7): 893-901.
No Suggested Reading articles found!