Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 579-586    DOI: 10.3724/SP.J.1037.2012.00087
论文 Current Issue | Archive | Adv Search |
HIGH TEMPERATURE OXIDATION RESISTANCE AND MECHANICAL PROPERTIES OF NiCrAlY/Al--Al2O3 COATINGS ON AN ORTHORHOMBIC Ti2AlNb ALLOY
LI Haiqing1,2, GONG Jun2, SUN Chao2
1. Aerospace Research Institute of Materials and Processing Technology, China Academy of Launch Vehicle Technology,Beijing 100076
2. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences,
Cite this article: 

. HIGH TEMPERATURE OXIDATION RESISTANCE AND MECHANICAL PROPERTIES OF NiCrAlY/Al--Al2O3 COATINGS ON AN ORTHORHOMBIC Ti2AlNb ALLOY. Acta Metall Sin, 2012, 48(5): 579-586.

Download:  PDF(2832KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The orthorhombic Ti2AlNb alloys have received significant attentions because of their good physical and mechanical properties. However, these orthorhombic alloys face problems of oxidation at high temperature, especially above 700 ℃. To solve these problems, the use of surface coatings is an efficient way. However, when single coating was applied on the orthorhombic Ti2AlNb alloys, problems of serious interdiffusion and interfacial reaction were encountered, which resulted in worse oxidation behavior and deteriorated mechanical properties. To obtain good oxidation protection of NiCrAlY coating on the orthorhombic Ti2AlNb alloy, an efficient diffusion barrier should be added. In this study, NiCrAlY/Al--Al2O3 double--coatings were deposited on the orthhombic--Ti2AlNb alloy by arc ion plating. NiCrAlY coating acted as oxidation resistance coating and Al--Al2O3 coating acted as diffusion barrier. By introducing metallic Al in the Al2O3 film, the problem of coefficient of thermal expansion (CTE) mismatch between film and alloy substrate might be mitigate. Also metallic Al in the Al2O3 film can act as diffusion path which permits proper interdiffusion to improve the interface adhesion. The oxidation and interdiffusion behavior of specimens with and without diffusion barriers were investigated by oxidation tests at 900 ℃. The results indicated that substantial interdiffusion and rapid oxidation degradation occurred in the coated specimens without diffusion barrier. With Al--Al2O3 diffusion barriers, deferred interdiffusion and improved oxidation resistance were observed. Different contents of metallic Al in the Al2O3 coatings had different efficiency of diffusion barrier, and also affected interfacial mechanical properties. Among these NiCrAlY/Al--Al2O3 coatings, double--coating containing 1Al--Al2O3 diffusion barrier exhibited best performance. Coefficient of diffusion hindering was used to compare and quantify the efficiency of the diffusion barriers.
Key words:  coating      diffusion barrier      oxidation      interdiffusion      O-Ti2AlNb alloy     
Received:  22 February 2012     
Fund: 

National Natural Science Foundation of China

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00087     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/579

[1] Leyens C, Peters M.  Titanium and Titanium Alloys. Weinheim: Wiley--VCH, 2003; 52

[2] Kumpfert J.  Adv Eng Mater, 2001; 3: 851

[3] Ralison A, Dettenwanger F, Schutze M.  Mater High Temp, 2003; 20: 607

[4] Christoph L.  Oxid Met, 1999; 52: 475

[5] Ralison A, Dettenwanger F, Schutze M.  Mater Corros, 2000; 51: 317

[6] Dudziak T, Du H L, Datta P K, Wilson A, Ross I M, Moser M, Braun R.  Corros Sci, 2009; 51: 1189

[7] Leyens C, Braun R, Frohlich M, Hovsepian P E.  JOM, 2006; 58: 17

[8] Cvijovic I, Jovanovic M T, Perusko D.  Corros Sci, 2008; 50: 1919

[9] Xiong Y M, Zhu S L, Wang F H.  Surf Coat Technol, 2005; 197: 322

[10] Braun R, Leyens C.  Mater High Temp, 2005; 22: 437

[11] Braun R, Frohlich M, Leyens C, Renusch D.  Oxid Met, 2009; 71: 295

[12] Tang Z L, Wang F H, Wu W T.  Surf Coat Technol, 1998; 110: 57

[13] Zhang K, Wang Q M, Sun C, Wang F H.  Corros Sci, 2007; 49: 3598

[14] Goward G W.  Surf Coat Technol, 1998; 108: 73

[15] Sivakumar R, Mordike B L.  Surf Coat Technol, 1989; 37: 139

[16] Wang Q M, Zhang K, Gong J, Cui Y Y, Sun C, Wen L S.  Acta Mater, 2007; 55: 1427

[17] Muller J, Schierling M, Zimmermann E, Neuschutz D. Surf Coat Technol, 1999; 120--121: 16

[18] Wang Q M, Wu Y N, Ke P L, Sun C, Huang R F, Wen L S.  Acta Metall Sin, 2004; 40: 83

     (王启民, 吴颖娜, 柯培玲, 孙超, 黄荣芳, 闻立时. 金属学报, 2004; 40: 83)

[19] Li H Q, Wang Q M, Jiang S M, Gong J, Sun C.  Corros Sci, 2010; 52: 1668

[20] Knotek O, Lugscheider E, Loffler F, Beele W.  Surf Coat Technol, 1994; 68--69: 22

[21] Yao Y, Li W Z, Wang Q M, Gong J, Sun C, Li J B.  Acta Metall Sin, 2008; 44: 876

     (姚勇, 李伟洲, 王启民, 宫骏, 孙 超, 李家宝. 金属学报, 2008; 44: 876)
 
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[3] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[4] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[5] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[6] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[7] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[8] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[9] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[10] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[11] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[12] HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. 金属学报, 2023, 59(10): 1346-1354.
[13] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[14] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[15] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
No Suggested Reading articles found!