Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (12): 1567-1574    DOI: 10.3724/SP.J.1037.2011.00509
论文 Current Issue | Archive | Adv Search |
THE EFFECT OF {10¯11}–{10¯12} DOUBLE TWINNING ON THE MICROSTRUCTURE, TEXTURE AND MECHANICAL PROPERTIES OF AZ31 MAGNESIUM ALLOY SHEET DURING ROLLING DEFORMATION
LUO Jinru 1, LIU Qing 1,2, LIU Wei 1, Godfrey Andrew 1
1) Department of Materials Science and Engineering, Tsinghua University, Beijing 100084
2) School of Materials Science and Engineering, Chongqing University, Chongqing 400044
Cite this article: 

. THE EFFECT OF {10¯11}–{10¯12} DOUBLE TWINNING ON THE MICROSTRUCTURE, TEXTURE AND MECHANICAL PROPERTIES OF AZ31 MAGNESIUM ALLOY SHEET DURING ROLLING DEFORMATION. Acta Metall Sin, 2011, 47(12): 1567-1574.

Download:  PDF(1283KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  {10¯11}–{10¯12} double twin is the most common twin type being observed in the rolled AZ31 magnesium alloy, especially at low or moderate rolling temperature. Four types of rolled AZ31 magnesium alloy sheets were produced by rolling strong basal textured AZ31 plates at 150 ℃ and 300 ℃ respectively through different rolling paths by two passes till total reduction 17%. The rolling paths are normal and cross rolling respectively: the rolling directions of the two passes for normal rolling are mentally paralleled while perpendicular to each other for the cross rolling. Sheets are characterized in terms of microstructure and texture using optical microscope and scanning–electron microscope equipped with EBSD detector, and their mechanical performances are measured by uniaxial tensile tests at room temperature and a strain rate of 0.001 s−1. Tensile samples are cut parallel or perpendicular to the final rolling direction to obtain the mechanical anisotropies. The effects of the {10¯11}–{10¯12} double twins occurred during rolling onto the sheets the microstructure, texture and mechanical properties of the rolled sheets are discussed and related to each other. The results show that proportion of {10¯11}–{10¯12} double twins varies widely in different rolled sheets, which are determined by the rolling temperature. The twins in different rolled sheets are arranged in different ways. In the normal rolled sheets, the traces of twins are approximately perpendicular to the final rolling direction, while in the cross rolled sheets there are both traces of twins parallel and to the final directions. This phenomenon is related to the variant selection of twinning during rolling deformation. And the variant selection law is related to the rolling direction. For the same reason, the textures of twins in the rolled sheets produced through different paths are different. The textures of twins will add onto the bulks, and increases the textural difference between the bulks. The differences between mechanical properties of the rolled sheets are also related to the different textures and microstructures of the sheets caused by twins.
Key words:  AZ31 magnesium alloy      rolling      {10¯11}–{10¯12} double twin      microstructure      texture     
Received:  08 August 2011     
ZTFLH: 

TG335.12

 
Fund: 

Supported by National Basic Research Program of China (No.2007CB613703)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00509     OR     https://www.ams.org.cn/EN/Y2011/V47/I12/1567

[1] Styczynski A, Hartig Ch, Bohlen J, Letzig D. Scr Mater,2004; 50: 943

[2] Al–Samman T, Gottstein G. Scr Mater, 2008; 59: 760

[3] Beausir B, Biswas S, Kim D I, Toth L S, Suwas S. Acta Mater, 2009; 57: 5061

[4] Chapuis A, Driver J H. Acta Mater, 2011; 59: 1986

[5] Hutchinson W B, Barnett M R. Scr Mater, 2010; 63: 737

[6] Yoshinaga H, Obara T, Morozumi S. Mater Sci Eng, 1973; 12: 255

[7] Reed–Hill R E, Robertson W D. Acta Metall, 1957; 5: 717

[8] Reed–Hill R E. Trans Metall Soc AIME, 1960; 28: 554

[9] Barnett M R, Nave M D, Bettles C J. Mater Sci Eng, 2004; A386: 205

[10] Kim K H, Suh B C, Bae J H, Shim M S, Kim S, Kim N J. Scr Mater, 2010; 63: 716

[11] Sandlobes S, Zaefferer S, Schestakow I, Yi S, Gonzalez–Martinez R. Acta Mater, 2011; 59: 429

[12] Reed–Hill R E, Robertson W D. Acta Metall, 1957; 5: 728

[13] Barneet M R. Mater Sci Eng, 2007; A464: 8

[14] Koike J, Fujiyama N, Ando D, Sutu Y. Scr Mater, 2010; 63: 747

[15] Ando D, Koike J, Sutou Y. Acta Mater, 2010; 58: 4316

[16] Cizek P, Barnett M R. Scr Mater, 2008; 59: 959

[17] Chino Y, Kimura K, Hakamada M, Mabuchi M. Mater Sci Eng, 2007; A485: 311

[18] Tang W N, Chen R S, Han E H. Acta Metall Sin, 2006; 42: 1096

(唐伟能, 陈荣石, 韩恩厚. 金属学报, 2006; 42: 1096)

[19] Perez–Prado M T, del Valle J A, Ruano O A. Scr Mater, 2004; 50: 667

[20] Jin L, Dong J, Wang R, Peng L M. Mater Sci Eng, 2010; A527: 1970

[21] Yi S, Schestakow I, Zaefferer S. Mater Sci Eng, 2009; A516: 58

[22] Li X, Wang L N, Meng L, Cui F. Mater Sci Eng, 2009; A517: 160

[23] Martin E, Jonas J J. Acta Mater, 2010; 58: 4253

[24] Yu Z, Choo H. Scr Mater, 2011; 64: 434

[25] Li X, Al–Samman T, Gottstein G. Mater Des, 2011; 32: 4385

[26] Chen X, Shang D, Xiao R, Huang G, Liu Q. Trans Nonferrous Met Soc China, 2010; 20: s589

[27] Jiang J, Godfrey A, Liu W, Liu Q. Mater Sci Eng, 2008; A483–484: 576

[28] Barnett M R, Keshavarz Z, Beer A G, Ma X. Acta Mater, 2008; 56: 5

[29] Martin E, Capolungo L, Jiang L, Jonas J J. Acta Mater, 2010; 58: 3970

[30] Jonas J J, Mu S, Al–Samman T, Gottstein G, Jiang L, Martin E. Acta Mater, 2011; 59: 2046

[31] Yang X Y, Zhang L. Acta Metall Sin, 2009; 45: 1303

(杨续跃, 张雷. 金属学报, 2009; 45: 1303)

[32] Agnew S R, Yoo M H, Tome C N. Acta Mater, 2001; 49: 4277

[33] Liang S, Sun H, Liu Z, Wang E. J Alloys Compd, 2009; 472: 127

[34] HarttW H, Reed–Hill R E. Trans Matell Soc AIME, 1967; 239: 1511

[35] Ma Q, Kadiri H E, Oppedal A L, Baird J C, Horstemeyer M F, Cherkaoui M. Scr Mater, 2011; 64: 813

[36] Mahajan S, Chin G Y. Acta Metall, 1973; 21: 173

[37] Mahajan S, Chin G Y. Acta Metall, 1974; 22: 1113

[38] Kadiri H E, Oppedal A L. J Mech Phys Solids, 2010; 58: 613

[39] Knezevic M, Levinson A, Harris R, Mishra R K, Doherty R D, Kalidindi S R. Acta Mater, 2010; 58: 6230
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[13] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!