Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (4): 476-486    DOI: 10.11900/0412.1961.2019.00389
Current Issue | Archive | Adv Search |
Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels
ZHANG Zhefeng(),SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(10318KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of automotive industry, it is necessary to develop advanced high-strength steels for the purpose of lightweight of car. Based on the systematic studies on the strengthening and toughening as well as fatigue design of the twinning-induced plasticity (TWIP) steels, the recent progress in this aspect is summarized and discussed. Among them, the strengthening and toughening mechanisms have been analyzed and further developed in terms of several influencing factors, including compositions, microstructure, strain rate and so on. Furthermore, the low-cycle and high-cycle fatigue behaviors and damage mechanisms were explored. For better understanding the intrinsic fatigue damage mechanism, a new low-cycle fatigue prediction model regarding the hysteresis loop energy during cyclic deformation was introduced. It is found that the energy damage model can well explain and evaluate the fatigue damage mechanism and predict the low-cycle fatigue life of the TWIP steels and other materials. Based on the new fatigue damage model, new TWIP steels with high service performance can be developed by adjusting their deformation and damage mechanisms rationally.

Key words:  twinning induced plasticity (TWIP) steel      tension      strength      plasticity      high-cycle fatigue      low-cycle fatigue      fatigue life      damage mechanism     
Received:  14 November 2019     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(51801216);National Natural Science Foundation of China(51771208);National Natural Science Foundation of China(U1664253)
Corresponding Authors:  Zhefeng ZHANG     E-mail:  zhfzhang@imr.ac.cn

Cite this article: 

ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels. Acta Metall Sin, 2020, 56(4): 476-486.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00389     OR     https://www.ams.org.cn/EN/Y2020/V56/I4/476

Fig.1  Engineering stress-strain curves for various twinning-induced plasticity (TWIP) steels[7,8,9,10]Color online(a) Fe-30Mn-xC[7] (b) Fe-xMn-0.6C[8] (c) Fe-22Mn-0.6C-xAl[9] (d) Fe-18Mn-0.6C-xSi[10]
Fig.2  The overall tensile properties of Fe-Mn-C and Fe-Mn-Si-Al TWIP steels (in true stress-strain values)[9]Color online
Fig.3  Mechanical properties of Fe-Mn-Al-Si steels in various conditions (CG—coarse grain)[14]Color online(a) tensile stress-strain curves of Fe-20Mn-3Al-3Si steel after equal-channel angular pressing (ECAP) and annealing(b) relationship between tensile stress and uniform elongation of Fe-xMn-3Al-3Si steels after different processing conditions
Fig.4  Evading the strength-ductility trade-off dilemma in TWIP steel through gradient hierarchical grains and nanotwins[16,17]Color online
Fig.5  The tensile stress-strain curves of Fe-22Mn-0.6C (a) and Fe-30Mn-3Si-2.6Al (b) TWIP steels under various strain rates[21]Color online
Fig.6  Strain rate (ε˙) effect on the ultimate tensile strength and uniform elongation in DSA-facilitated and DSA-free TWIP steel (SF—stacking fault, DSA—dynamic strain ageing)[21]
Fig.7  Microstructure evolution of Fe-18Mn-0.6C steel during tension(a~c) electron channeling contrast (ECC) images photographed at strain 5% (a), 45% (b) and 80% (c)(d) TEM images photographed at strain 5%
Fig.8  Comparison of twinning evolution during tension in Fe-xMn-0.6C[24]Color online(a) fraction of twinned grain (b) twins cluster spacing
Fig.9  High-cycle fatigue properties of TWIP steel[26,29](a) S-N curves of the as-received and pre-deformed Fe-30Mn-0.9C TWIP steels[26](b) S-N curves of Fe-30Mn-0.9C and Fe-30Mn-0.3C TWIP steels[29]
Fig.10  Fatigue life prediction models and corresponding parameters[7](a) the Coffin-Manson curves(b) the Basquin curves(c) the hysteresis energy model
Fig.11  Comparison of fatigue crack growth rate between Fe-30Mn-0.9C and Fe-30Mn-0.3C TWIP steels[29](a) relationship between the fatigue crack growth rate (da/dN) and stress intensity factor range (ΔK)(b) statistics results of fatigue striation spacing
Fig.12  Microscopic damage in TWIP steel under cyclic deformation (SB—slip band, GB—grain boundary)[7,8] (a~c) SEM images of surface damage features of Fe-18Mn-0.6C alloy after cyclic loading at the strain amplitudes of 0.3%, 49782 cyc (a), 1.0%, 3237 cyc (b) and 4.0%, 160 cyc (c) (d~f) TEM images of typical microstructure of Fe-30Mn-0.3C (d), Fe-30Mn-0.9C (e) and Fe-18Mn-0.6C (f) alloys after cyclic loading at the strain amplitude of 1%
[1] De Cooman B C, Kwon O, Chin K G. State-of-the-knowledge on TWIP steel [J]. Mater. Sci. Technol., 2012, 28: 513
[2] Gr?ssel O, Krüger L, Frommeyer G, et al. High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development-properties-application [J]. Int. J. Plast., 2000, 16: 1391
[3] Wu S D, An X H, Han W Z, et al. Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing [J]. Acta Metall. Sin., 2010, 46: 257
[3] 吴世丁, 安祥海, 韩卫忠等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能 [J]. 金属学报, 2010, 46: 257
[4] An X H, Wu S D, Wang Z G, et al. Significance of stacking fault energy in bulk nanostructured materials: Insights from Cu and its binary alloys as model systems [J]. Prog. Mater. Sci., 2019, 101: 1
[5] Liu R, Zhang Z J, Zhang P, et al. Extremely low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction [J]. Acta Mater., 2015, 83: 341
[6] Zhang Z F, Liu R, Zhang Z J, et al. Exploration on the unified model for fatigue properties prediction of metallic materials [J]. Acta Metall. Sin., 2018, 54: 1693
[6] 张哲峰, 刘 睿, 张振军等. 金属材料疲劳性能预测统一模型探索 [J]. 金属学报, 2018, 54: 1693
[7] Shao C W, Zhang P, Liu R, et al. Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction [J]. Acta Mater., 2016, 103: 781
[8] Shao C W, Zhang P, Liu R, et al. A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: Importance of slip mode [J]. Acta Mater., 2016, 118: 196
[9] Yang H K, Zhang Z J, Tian Y Z, et al. Negative to positive transition of strain rate sensitivity in Fe-22Mn-0.6C-x(Al) twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2017, A690: 146
[10] Lee S M, Park I J, Jung J G, et al. The effect of Si on hydrogen embrittlement of Fe-18Mn-0.6C-xSi twinning-induced plasticity steels [J]. Acta Mater., 2016, 103: 264
[11] Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J]. Curr. Opin. Solid State Mater. Sci., 2011, 15: 141
[12] Chen L, Kim H S, Kim S K, et al. Localized deformation due to Portevin-Le Chatelier effect in 18Mn-0.6C TWIP austenitic steel [J]. ISIJ Int., 2007, 47: 1804
[13] Yang H K, Zhang Z J, Zhang Z F. Comparison of work hardening and deformation twinning evolution in Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steels [J]. Scr. Mater., 2013, 68: 992
[14] Dong F Y. Investigations on strength-ductility optimization, fracture and damage behaviors of high strength austenitic steels [D]. Beijing: University of Chinese Academy of Sciences, 2015
[14] 董福元. 奥氏体高强钢的强韧化与损伤断裂行为研究 [D]. 北京: 中国科学院大学, 2015
[15] An X H, Wu S D, Zhang Z F, et al. Enhanced strength-ductility synergy in nanostructured Cu and Cu-Al alloys processed by high-pressure torsion and subsequent annealing [J]. Scr. Mater., 2012, 66: 227
[16] Shao C W, Zhang P, Zhu Y K, et al. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413
[17] Wei Y J, Li Y Q, Zhu L C, et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun., 2014, 5: 3580
[18] Frommeyer G, Brüx U, Neumann P. Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J]. ISIJ Int., 2003, 43: 438
[19] Yang H K, Zhang Z J, Dong F Y, et al. Strain rate effects on tensile deformation behaviors for Fe-22Mn-0.6C-(1.5Al) twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2014, A607: 551
[20] Qian L H, Guo P C, Meng J Y, et al. Unusual grain-size and strain-rate effects on the serrated flow in FeMnC twin-induced plasticity steels [J]. J. Mater. Sci., 2013, 48: 1669
[21] Yang H K, Tian Y Z, Zhang Z J, et al. Different strain rate sensitivities between Fe-22Mn-0.6C and Fe-30Mn-3Si-3Al twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2016, A655: 251
[22] Yang H K, Doquet V, Zhang Z F. Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests [J]. Mater. Sci. Eng., 2016, A672: 7
[23] Shao C W, Zhang P, Zhang Z J, et al. Butterfly effect in low-cycle fatigue: Importance of microscopic damage mechanism [J]. Scr. Mater., 2017, 140: 76
[24] Shao C W, Zhang P, Zhang Z J, et al. Forecasting low-cycle fatigue performance of twinning-induced plasticity steels: Difficulty and attempt [J]. Metall. Mater. Trans., 2017, 48A: 5833
[25] Niendorf T, Lotze C, Canadinc D, et al. The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2009, A499: 518
[26] Wang B, Zhang P, Duan Q Q, et al. High-cycle fatigue properties and damage mechanisms of pre-strained Fe-30Mn-0.9C twinning-induced plasticity steel [J]. Mater. Sci. Eng., 2017, A679: 258
[27] Cornette D, Cugy P, Hildenbrand A, et al. Ultra high strength FeMn TWIP steels for automotive safety parts [J]. Rev. Met. Paris, 2005, 102: 905
[28] Hamada A S, Karjalainen L P, Puustinen J. Fatigue behavior of high-Mn TWIP steels [J]. Mater. Sci. Eng., 2009, A517: 68
[29] Wang B, Zhang P, Duan Q Q, et al. Synchronously improved fatigue strength and fatigue crack growth resistance in twinning-induced plasticity steels [J]. Mater. Sci. Eng., 2018, A711: 533
[30] Niendorf T, Rubitschek F, Maier H J, et al. Fatigue crack growth-microstructure relationships in a high-manganese austenitic TWIP steel [J]. Mater. Sci. Eng., 2010, A527: 2412
[31] Hamada A S, Karjalainen L P. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels [J]. Mater. Sci. Eng., 2010, A527: 5715
[32] Shao C W, Wang Q, Zhang P, et al. Improving the high-cycle fatigue properties of twinning-induced plasticity steel by a novel surface treatment process [J]. Mater. Sci. Eng., 2019, A740-741: 28
[33] Shao C W, Zhang P, Wang X G, et al. High-cycle fatigue behavior of TWIP steel with graded grains: breaking the rule of mixture [J]. Mater. Res. Lett., 2019, 7: 26
[34] Guo P C, Qian L H, Meng J Y, et al. Low-cycle fatigue behavior of a high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2013, A584: 133
[35] Ma P H, Qian L H, Meng J Y, et al. Fatigue crack growth behavior of a coarse- and a fine-grained high manganese austenitic twin-induced plasticity steel [J]. Mater. Sci. Eng., 2014, A605: 160
[36] Ma P H, Qian L H, Meng J Y, et al. Influence of Al on the fatigue crack growth behavior of Fe-22Mn-(3Al)-0.6C TWIP steels [J]. Mater. Sci. Eng., 2015, A645: 136
[37] Shao C W, Zhang P, Zhu Y K, et al. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure [J]. Acta Mater., 2018, 145: 413
[1] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[2] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[3] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[4] JIANG Yi,CHENG Manlang,JIANG Haihong,ZHOU Qinglong,JIANG Meixue,JIANG Laizhu,JIANG Yiming. Microstructure and Properties of 08Cr19Mn6Ni3Cu2N (QN1803) High Strength Nitrogen Alloyed LowNickel Austenitic Stainless Steel[J]. 金属学报, 2020, 56(4): 642-652.
[5] LIU Zhenbao,LIANG Jianxiong,SU Jie,WANG Xiaohui,SUN Yongqing,WANG Changjun,YANG Zhiyong. Research and Application Progress in Ultra-HighStrength Stainless Steel[J]. 金属学报, 2020, 56(4): 549-557.
[6] PENG Yun,SONG Liang,ZHAO Lin,MA Chengyong,ZHAO Haiyan,TIAN Zhiling. Research Status of Weldability of Advanced Steel[J]. 金属学报, 2020, 56(4): 601-618.
[7] WANG Cunyu,CHANG Ying,ZHOU Fengluan,CAO Wenquan,DONG Han,WENG Yuqing. M3 Microstructure Control Theory and Technology of the Third-Generation Automotive Steels with HighStrength and High Ductility[J]. 金属学报, 2020, 56(4): 400-410.
[8] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[9] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[10] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[11] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[12] WANG Lei, AN Jinlan, LIU Yang, SONG Xiu. Deformation Behavior and Strengthening-Toughening Mechanism of GH4169 Alloy with Multi-Field Coupling[J]. 金属学报, 2019, 55(9): 1185-1194.
[13] Zhengkai WU, Shengchuan WU, Jie ZHANG, Zhe SONG, Yanan HU, Guozheng KANG, Haiou ZHANG. Defect Induced Fatigue Behaviors of Selective Laser Melted Ti-6Al-4V via Synchrotron Radiation X-Ray Tomography[J]. 金属学报, 2019, 55(7): 811-820.
[14] Xuexiong LI,Dongsheng XU,Rui YANG. Crystal Plasticity Finite Element Method Investigation of the High Temperature Deformation Consistency in Dual-Phase Titanium Alloy[J]. 金属学报, 2019, 55(7): 928-938.
[15] Bo LI,Zhonghua ZHANG,Huasong LIU,Ming LUO,Peng LAN,Haiyan TANG,Jiaquan ZHANG. Characteristics and Evolution of the Spot Segregations and Banded Defects in High Strength Corrosion Resistant Tube Steel[J]. 金属学报, 2019, 55(6): 762-772.
No Suggested Reading articles found!