Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (12): 1517-1521    DOI: 10.3724/SP.J.1037.2010.00276
论文 Current Issue | Archive | Adv Search |
INFLUENCES ON MECHANICAL PROPERTIES OF FRICTION STIR WELDED JOINTS BY Al CLAD ACCUMULATION
KANG Xu1, SHI Qingyu1, SUN Kai1, WANG Xin2
1.Key Laboratory for Advanced Materials Processing Technology, Department of Mechanical Engineering, Tsinghua
University, Beijing 100084
2.Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
Cite this article: 

KANG Xu SHI Qingyu SUN Kai WANG Xin. INFLUENCES ON MECHANICAL PROPERTIES OF FRICTION STIR WELDED JOINTS BY Al CLAD ACCUMULATION. Acta Metall Sin, 2010, 46(12): 1517-1521.

Download:  PDF(1582KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Friction stir welding (FSW) is increasingly used in joining the high strength aluminum alloys. Compared to traditional fusion welding methods, one of advantages of FSW is to obtain defect–free joints more easily. Besides the forms of FSW tools and welding parameters, certain characteristics of the base material can also affect the quality of welded joints. There is usually a protective layer on aluminum alloy surface to prevent corrosion, called Al clad. Generally the mechanical properties of Al clad are significantly lower than those of the base metal. In this paper, tensile and three–point bending tests were applied to investigate the influence of accumulated Al clad on mechanical properties of joints. The mechanism of reducing the mechanical properties of joints, caused by the accumulated Al clad was analyzed by OM, SEM and EDS. The results show that the mechanical properties of the welded joints are lower than those of the joint with which the bottom Al clad on the base material is removed before or after welding. The Al clad tiled on bottom of the base material is squeezed to both sides of the onion ring in the role of the FSW tool and gathered in the bottom after welding. Due to the poorer mechanical properties of Al clad than the base metal, the Al clad aggregation positions become the weak areas in the joints, leading to the formation of the micro cracks in the joints under tensile stress where the micro cracks continue extending to generate macro cracks under the continuous tensile stress. This is the main eason of joint breaking more easily under low strss.
Key words:  friction stiwelding      Al clad      mechanical properties      microstructure     
Received:  10 June 2010     
ZTFLH: 

TG453

 
Fund: 

Supported by National Natural Science Foundation of China (No.50875146)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00276     OR     https://www.ams.org.cn/EN/Y2010/V46/I12/1517

[1] Thomas W M, Nicholas E D, Needham J C, Murch M G, Templesmith P, Dawes C J. Gr Br Pat Appl No. 9125978.8, 1991 [2] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; R50: 1 [3] Colegrove P A, Shercliff H R. Sci Technol Weld Joining, 2003; 8(5): 360 [4] Threadgill P L, Leonard A J, Shercliff H R, Withers P J. Int Mater Rev, 2009; 54(2): 49 [5] Lombard H, Hattingh D G, Steuwer A, James M N. Eng Fract Mech, 2008; 75: 341 [6] Zhou P Z, Li D H, He D Q, Deng H. Trans Chin Weld Inst, 2007; 28(10): 5 (周鹏展, 李东辉, 贺地求, 邓航. 焊接学报, 2007; 28(10): 5) [7] Wang W, Shi Q Y, Li T, Li Hong Ke. Trans Chin Weld Inst, 2008; 29(5): 77 (王伟, 史清宇, 李亭, 李红克. 焊接学报, 2008; 29(5): 77) [8] Zhao J J, Zhang P, Wang W X, Ma L, Hu W W. Trans Chin Weld Inst, 2005; 26(5): 61 (赵军军, 张平, 王卫欣, 马琳, 胡卫伍. 焊接学报, 2005; 26(5): 61) [9] Fu Z H, He D Q, Zhou P Z, Hu A W. Trans Chin Weld Inst, 2006; 27(5): 65 (傅志红, 贺地求, 周鹏展, 胡爱武. 焊接学报, 2006; 27(5): 65) [10] Zhou P Z, Zhong J, He D Q. Chin J Nonferr Metals, 2006; 16(6): 964 (周鹏展, 钟掘, 贺地求. 中国有色金属学报, 2006; 16(6): 964) [11] Elangovan K, Balasubramanian V. Mater Des, 2008; 29: 362 [12] Ke L M, Pan J L, Xing L, Wang S L. Trans Chin Weld Inst, 2007; 28(5): 33 (柯黎明, 潘际銮, 邢丽, 王善林. 焊接学报, 2007; 28(5): 33) [13] Dong C L, Shen C B, Wang Z Z. J Dalian Jiaotong Univ, 2009; 30(6): 42 (董春林, 沈长斌, 王忠志. 大连交通大学学报, 2009; 30(6): 42) [14] Yan K, Ma Z X, Zhang J. J Mater Eng, 2008; 9: 44 (严铿, 马志新, 张健. 材料工程, 2008; 9: 44) [15] Kang X. Bachelor Thesis, Tsinghua University, Beijing, 2008 (康旭. 清华大学学士学位论文, 北京, 2008) [16] Wang X. Master Thesis, Tsinghua University, Beijing, 2008 (王鑫. 清华大学硕士学位论文, 北京, 2009)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!