Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (9): 1061-1065    DOI: 10.3724/SP.J.1037.2010.00157
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF QUENCHING TEMPERATURE ON MARTENSITE TYPE IN Ti-4Al-4.5Mo ALLOY
LI Changfu1), LI Geping1), YANG Yi2), YANG Ke1)
1) Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2) Northwest Institute for Non-ferrous Metal Research, Xi'an 710016
Cite this article: 

LI Changfu LI Geping YANG Yi YANG Ke. INFLUENCE OF QUENCHING TEMPERATURE ON MARTENSITE TYPE IN Ti-4Al-4.5Mo ALLOY. Acta Metall Sin, 2010, 46(9): 1061-1065.

Download:  PDF(743KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

There are many discrepancies in the literatures concerning the martensite constitution in the α+β double phase titanium alloys after quenching, so the Ti-4Al-4.5Mo alloy was selected to analysis further the martensite phase transformation in the alloy. The results show that when the quenching temperature is above the (α+β)/β transformation temperature (925 ℃), the hexagonal martensite (α´) formed. With the decrease of quenching temperature, another kind of martensite with orthorhombic structure (α´´) appeared which can coexist with α´ in a certain temperature range. In the sample quenched at 800 ℃, the α´´ disappeared, and the alloy only contains α and β phases. The α´´ martensite reduced the hardness of martensite transformed structure remarkably. EDS analysis indicated that the content of β stabilized element (Mo) is not the only factor determining the martensitic type.

Key words:  titanium alloy      quenching      martensitic phase      microhardness     
Received:  03 April 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00157     OR     https://www.ams.org.cn/EN/Y2010/V46/I9/1061

[1] Hunter L J, Strangwood M, Bowden P. In: Titanium ’95: Science and Technology, Institute of Materials, The University Press, Cambridge, United Kingdom, 1996; 2: 925 [2] Hunter L J, Strangwood M. In: Weiss I, Srinivasan R, Bania P J, Eylon D, Semiatin S L, eds., Advances in the Science and Technology of Titanium Alloy Processing, TMS, Warrendale, PA, 1997: 489 [3] Vaughan R F, Blenkinsop P A, Neal D F. In: Kimura H, Izumi O, eds., Titanium ’80: Science and Technology, AIME, Warrendale, PA, 1982; 3: 2047 [4] Flower H M, Lipscombe K, West D R F. J. Mater. Sci,1982; 17: 1221 [5] Guo H, Wei Z. Rare Metal Materials And Engineering, 2005; 34: 1935 [6] McDarmaid D S, Materials Science Engineering, 1985; 70: 123 [7] Lee Y T, Welsch G. Mater Sci Eng A, 1990; A128: 77 [8] Ohmori Y, Natui H, Nakai K, Ohtsubo H. Mater Trans, JIM, 1998; 39: 4048 [9] Mantani Y, Takemoto Y, Hida M, Sakakibara A.In: Proc 4th Pacific Rim Int conf on Advanced Mater and Proc., The Japan Inst.Metals, 2001: 2643 [10] Leyens C, Peters M. Titanium and Titanium Alloys, Fundamentals and Applications. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003: 22 [11] Lutjering G, Williamsames J C. Titanium, Engineering Materials and Processes, Heidelberg : Springer-Verlag Berlin, 2003: 32 [12] Kharia K K, Rack H J. Metall and Mater Trans A, 2001;32A: 671 [13] Ahmed T, Rack H J. J Mater Sci, 1996; 31:4267 [14] Davis R, Flower H M, West D R F. J Mater Sci, 1979; 14: 712 [15] Bagiriatskii I A, Nosova G I, Tagunova T V. Sov. Phys. Dokl, 1958; 3: 1014 [16]Zhang X Y, Zhao Y Q, Bai C G. Titanium Alloy and Application. Beijing: Chemical Industry Press, 2005: 92 (张喜燕, 赵永庆, 白晨光. 钛合金及应用. 北京: 化工出版社, 2005: 92) [17] Zhang M, Yang Y, Li C F, Li G P. Chinese Journal of Materials Research, 2008; 22: 68 (张岷, 杨义, 李长富, 李阁平. 材料研究学报, 2008; 22: 68) [18] Grujicic M, Narayan C P. Materials Science and Engineering A. 1992;151: 217 [19] Moffat D L, Larbalestier D C. Metallurgical transactions A. 1988;19A: 1677 [20] Inamura T, Kim J I, Kim H Y, Hosoda H, et al. Philosophical Magazine, 2007; 87: 23
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[5] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[6] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[7] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[8] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[9] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[10] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[11] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[12] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[13] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[14] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[15] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
No Suggested Reading articles found!