Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (12): 1481-1487    DOI: 10.3724/SP.J.1037.2010.00223
论文 Current Issue | Archive | Adv Search |
STUDY OF THE AGING PRECIPITATION AND HARDENING BEHAVIOR OF 6005A ALLOY SHEET FOR RAIL TRAFFIC VEHICLE
YANG Wenchao1, WANG Mingpu1, SHENG Xiaofei1, ZHANG Qian1, WANG Zheng’an2
1.School of Materials Science and Engineering, Central South University, Changsha 410083
2.Key laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University,
Changsha 410083
Download:  PDF(3443KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The single–stage aging process, microstructure evolution during the precipitation process and crystal structure and orientation relationships between the β′′ phase and matrix were studied by means of conventional transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and hardness testing in 6005A aluminum alloy used for rail traffic vehicle. The results show that 6005A alloy can reach its peak hardness after aging at 175 for 12 h, and maintain it for a longer time. It is found that there exist clusters or GP zones in this alloy at early stage of aging and the β′′  phase at the peak–aging stage. After the peak–aging, the β′′  phase as a main strengthening phase in 6005A aluminum alloy continues being precipitated from matrix for a long time. β′′  phase has a C–centered monoclinic lattice with the lattice parameters a=(1.52±0.04) nm, b=0.405 nm, c=(0.67±0.04) nm, β=105.26?. The crystallographic orientation relationship between the β′′  phase and matrix is found as follows: (010)β′′ //(001)Al, [200]β′′ //[230]Al, [002]β′′ //[¯310]Al. And, the precipitation sequence with aging time in 6005A aluminum alloy can be described: super saturated solid solution (SSS) →clusters→GP zone→ metastable β′′  phase→ metastable β′  phase+Q′ phase→ stable β(Mg2Si) phase+Q phase.
Key words:  6005A alloy      transmission electron microscopy (TEM)       β'' phase      microstructure      aging precipitation     
Received:  11 May 2010     
ZTFLH: 

TG 146.21

 
Fund: 

Supported by High Technology Research and Development Program of China (No.2006AA03Z517)

Corresponding Authors:  WANG Mingpu     E-mail:  yangwenchao1985@163.com

Cite this article: 

YANG Wenchao WANG Mingpu SHENG Xiaofei ZHANG Qian WANG Zheng’an. STUDY OF THE AGING PRECIPITATION AND HARDENING BEHAVIOR OF 6005A ALLOY SHEET FOR RAIL TRAFFIC VEHICLE. Acta Metall Sin, 2010, 46(12): 1481-1487.

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00223     OR     https://www.ams.org.cn/EN/Y2010/V46/I12/1481

[1] Hirsch J. Mater Sci Forum, 1997; 242:33 [2] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A. Mat Sci Eng A-Struct,2000; 250(1):37 [3]Moons T, Ratchev P, De Smet P, Verlinden B, Van Houtte P. Scripta Mater, 1996; 35(8):937 [4] Birol Y. Eng Fail Anal, 2010; 17(5):1110 [5] Xiao C W, Wang M P, Wang Z A, Li Z, Guo M X. Chin J Nonferrous Met, 2003;13(3):635 (肖从文, 汪明朴, 王正安, 李周, 郭明星. 中国有色金属学报,2003;13(3):635) [6] Buha J, Lumley R Crosky A G, Hono K. Acta Mater, 2007; 55(9):3015 [7] Yang C G, Shan J G, Xiong W. Welding & Joining, 2009; 10:13 (杨成功 ,单际国, 熊伟. 焊接, 2009; 10:13) [8] Birol Y. Scripta Mater, 2005; 52(3):169 [9] Andersen S J. Metall Mater Trans A, 1995; 26:1931 [10] Zandergen H W, Andersen S J, Jansen J. Science, 1997; 277:1221 [11] Andersen S J, Zandergen H W, Jansen J, Tr?holt C, Tundal U, Reiso O. Acta Mater,1998; 46(9):3283 [12] Edwards G A, Stiller K, Dunlop G L, Couper M J.Acta Mater, 1998; 46(11):3893 [13] Chakrabarti D J,Yingguo P, Laughlin DE. Mater Sci Forum, 2002; 392:857 [14] Wang X, Esmaeili D, Lloyd D J. Metall Mater Trans A, 2006; 37:2691 [15] Marioara C D, Andersen S J, Zandbergen H W, Holmestad R. Metall Mater Trans A, 2005;36:691 [16] Murayama M, Hono K. Acta Mater, 1999; 47(5):1537 [17] Gaber A, Mossad A, Matsuda K, Kawabata T, Yamazaki T, Ikeno S. J Alloy Compd, 2007; 432:149 [18] Yassar R S, Field D P, Weiland H. Scripta Mater, 2005; 53: 299 [19] Matsuda K, Ikeno S, Matsui H, Sato T. Metall Mater Trans A, 2005; 36:2007
[1] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[2] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[3] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[4] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[5] LIU Zhenpeng, YAN Zhiqiao, CHEN Feng, WANG Shuncheng, LONG Ying, WU Yixiong. Fabrication and Performance Characterization of Cu-10Sn-xNi Alloy for Diamond Tools[J]. 金属学报, 2020, 56(5): 760-768.
[6] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[7] YANG Ke,SHI Xianbo,YAN Wei,ZENG Yunpeng,SHAN Yiyin,REN Yi. Novel Cu-Bearing Pipeline Steels: A New Strategy to Improve Resistance to Microbiologically Influenced Corrosion for Pipeline Steels[J]. 金属学报, 2020, 56(4): 385-399.
[8] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[9] XIAO Hong,XU Pengpeng,QI Zichen,WU Zonghe,ZHAO Yunpeng. Preparation of Steel/Aluminum Laminated Composites by Differential Temperature Rolling with Induction Heating[J]. 金属学报, 2020, 56(2): 231-239.
[10] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[11] DENG Congkun,JIANG Hongxiang,ZHAO Jiuzhou,HE Jie,ZHAO Lei. Study on the Solidification of Ag-Ni Monotectic Alloy[J]. 金属学报, 2020, 56(2): 212-220.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[15] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
No Suggested Reading articles found!