Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (12): 1481-1487    DOI: 10.3724/SP.J.1037.2010.00223
论文 Current Issue | Archive | Adv Search |
STUDY OF THE AGING PRECIPITATION AND HARDENING BEHAVIOR OF 6005A ALLOY SHEET FOR RAIL TRAFFIC VEHICLE
YANG Wenchao1, WANG Mingpu1, SHENG Xiaofei1, ZHANG Qian1, WANG Zheng’an2
1.School of Materials Science and Engineering, Central South University, Changsha 410083
2.Key laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University,
Changsha 410083
Cite this article: 

YANG Wenchao WANG Mingpu SHENG Xiaofei ZHANG Qian WANG Zheng’an. STUDY OF THE AGING PRECIPITATION AND HARDENING BEHAVIOR OF 6005A ALLOY SHEET FOR RAIL TRAFFIC VEHICLE. Acta Metall Sin, 2010, 46(12): 1481-1487.

Download:  PDF(3443KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The single–stage aging process, microstructure evolution during the precipitation process and crystal structure and orientation relationships between the β′′ phase and matrix were studied by means of conventional transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and hardness testing in 6005A aluminum alloy used for rail traffic vehicle. The results show that 6005A alloy can reach its peak hardness after aging at 175 for 12 h, and maintain it for a longer time. It is found that there exist clusters or GP zones in this alloy at early stage of aging and the β′′  phase at the peak–aging stage. After the peak–aging, the β′′  phase as a main strengthening phase in 6005A aluminum alloy continues being precipitated from matrix for a long time. β′′  phase has a C–centered monoclinic lattice with the lattice parameters a=(1.52±0.04) nm, b=0.405 nm, c=(0.67±0.04) nm, β=105.26?. The crystallographic orientation relationship between the β′′  phase and matrix is found as follows: (010)β′′ //(001)Al, [200]β′′ //[230]Al, [002]β′′ //[¯310]Al. And, the precipitation sequence with aging time in 6005A aluminum alloy can be described: super saturated solid solution (SSS) →clusters→GP zone→ metastable β′′  phase→ metastable β′  phase+Q′ phase→ stable β(Mg2Si) phase+Q phase.
Key words:  6005A alloy      transmission electron microscopy (TEM)       β'' phase      microstructure      aging precipitation     
Received:  11 May 2010     
ZTFLH: 

TG 146.21

 
Fund: 

Supported by High Technology Research and Development Program of China (No.2006AA03Z517)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00223     OR     https://www.ams.org.cn/EN/Y2010/V46/I12/1481

[1] Hirsch J. Mater Sci Forum, 1997; 242:33 [2] Miller W S, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, Vieregge A. Mat Sci Eng A-Struct,2000; 250(1):37 [3]Moons T, Ratchev P, De Smet P, Verlinden B, Van Houtte P. Scripta Mater, 1996; 35(8):937 [4] Birol Y. Eng Fail Anal, 2010; 17(5):1110 [5] Xiao C W, Wang M P, Wang Z A, Li Z, Guo M X. Chin J Nonferrous Met, 2003;13(3):635 (肖从文, 汪明朴, 王正安, 李周, 郭明星. 中国有色金属学报,2003;13(3):635) [6] Buha J, Lumley R Crosky A G, Hono K. Acta Mater, 2007; 55(9):3015 [7] Yang C G, Shan J G, Xiong W. Welding & Joining, 2009; 10:13 (杨成功 ,单际国, 熊伟. 焊接, 2009; 10:13) [8] Birol Y. Scripta Mater, 2005; 52(3):169 [9] Andersen S J. Metall Mater Trans A, 1995; 26:1931 [10] Zandergen H W, Andersen S J, Jansen J. Science, 1997; 277:1221 [11] Andersen S J, Zandergen H W, Jansen J, Tr?holt C, Tundal U, Reiso O. Acta Mater,1998; 46(9):3283 [12] Edwards G A, Stiller K, Dunlop G L, Couper M J.Acta Mater, 1998; 46(11):3893 [13] Chakrabarti D J,Yingguo P, Laughlin DE. Mater Sci Forum, 2002; 392:857 [14] Wang X, Esmaeili D, Lloyd D J. Metall Mater Trans A, 2006; 37:2691 [15] Marioara C D, Andersen S J, Zandbergen H W, Holmestad R. Metall Mater Trans A, 2005;36:691 [16] Murayama M, Hono K. Acta Mater, 1999; 47(5):1537 [17] Gaber A, Mossad A, Matsuda K, Kawabata T, Yamazaki T, Ikeno S. J Alloy Compd, 2007; 432:149 [18] Yassar R S, Field D P, Weiland H. Scripta Mater, 2005; 53: 299 [19] Matsuda K, Ikeno S, Matsui H, Sato T. Metall Mater Trans A, 2005; 36:2007
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!