|
|
MOLECULAR DYNAMICS SIMULATION OF PHASE TRANSFORMATION of γ-Fe→δ-Fe→LIQUID–Fe IN CONTINUOUS TEMPERATURE–RISE PROCESS |
LIU Yihu; WU Yongquan; SHEN Tong; WANG Zhaoke; JIANG Guochang |
Shanghai Key Laboratory of Modern Metallurgy & Materials Processing; Shanghai University; Shanghai 200072 |
|
Cite this article:
LIU Yihu WU Yongquan SHEN Tong WANG Zhaoke JIANG Guochang. MOLECULAR DYNAMICS SIMULATION OF PHASE TRANSFORMATION of γ-Fe→δ-Fe→LIQUID–Fe IN CONTINUOUS TEMPERATURE–RISE PROCESS. Acta Metall Sin, 2010, 46(2): 172-178.
|
Abstract Understanding high–temperature phase transformations of pure Fe is fundamental for quality control and product design of steels. Various theoretical methods have been used to determine dynamically the mechanism of phase transformations in pure Fe including γ–Fe to δ–Fe and δ–Fe to liquid–Fe. Among these methods, molecular dynamics (MD) simulation has become a prospective method, in which atomic interactions play a key role in phase transformations. However, most attention ws focused on the MD simulation of temperature–drop phase transformtions rather than temprture–rise phase transformations befor. In the present study the isothermal–isobaric MD simulation at a wide temperature range of γ-Fe→δ-Fe→liquid–Fe transformations in pure Fe was carried out by giving a set of long–rnge Finnis–Sinclair potential parameters. The results show that a better agreemenbetween simultion nd experimental results for the microstructures (including radial distribution functions and coordination numbers) and densities of transformed phases validate that the set of potential parameters for the MD simulation are reasonable. The larger difference between the calculated and experimental trnsfrmation temperatureiattributed to the effect of superheat degree induced by ultrafast heating speed in the MD simulation. Evolvement of microsructures exibits lattice–distorting and sldng induced by γ–Fe to δ-Fe phase ransformation and melting of δ–Fe islands from δ–Fe to liquid–Fe. Finall, in the MD simulation stronger and stronger fluctuations of instantaneous energy ad density just before transformations, especially melting, show an apparent pregnant process in phase transfrmations.
|
Received: 15 May 2009
|
Fund: Supported by National Natural Science Foundation of China (Nos.50504010 and 50974083), Joint Funds of NSFC–Shanghai Baosteel Corporation (No.50774112), Shanghai Rising–Star Program (No.07QA14021), Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0739) and Innovation Program of Shanghai Municipal Education Commission (No.09YZ24) |
[1] Daw M S, Baskes M I. Phys Rev, 1984; 29B: 6443
[2] Finnis M W, Sinclair J E. Philos Mag, 1984; 50A: 45
[3] Sutton A P, Chen J. Philos Mag Lett, 1990; 61: 139
[4] Lennad–Jones J E. Physica, 1937; 4A: 941
[5] Daw M S, Baskes M I. Phys Rev Lett, 1983; 50: 1285
[6] Ackland G J, Vitek V. Phys Rev, 1990; 45B: 10324
[7] Wen Y H, Zhu T, Cao L X, Wang C Y. Acta Phys Sin, 2003; 52: 2520
(文玉华, 朱弢, 曹立霞, 王崇愚. 物理学报, 2003; 52: 2520)
[8] Liu H Y, Wang X X, Wu H A, Wang Y. Acta Phys Sin, 2002; 51: 2308
[9] Yang Q W, Zhu R Z. Acta Phys Sin, 2005; 54: 4245
(杨全文, 朱如曾. 物理学报, 2005; 54: 4245)
[10] Daw M S, Foiles S M. Phys Rev Lett, 1987; 59: 2756
[11] Ackland G J, Tichy G, Vitek V, Finnis M W. Philos Mag, 1987; 56A: 735
[12] Li H, Wang G H, Ding F, Wang J L, Shen W F. Phys Lett, 2001; 280A: 325
[13] Shimomura Y, Sugio K, Kogure Y, Doyama M. Comput Mater Sci, 1999; 14: 36
[14] Li X H, Huang J F. J Solid State Chem, 2003; 176: 234
[15] Foiles S M. Surf Sci, 1987; 191: 329
[16] Ackland G J, Bacon D J, Calder A F, Harry T. Philos Mag, 1997; 75A: 713
[17] Belonoshko A B, Ahuja R, Johansson B. Phys Rev Lett, 200084: 3639
[18] Colakoglu K, Ugur G, Cakmak M, Tutuncu H M. Turk Phys, 1999; 23: 479
[19] Bacon D J, Diaz de la Rubia T J. Nucl Mater, 1994; 216: 275
[20] Bacon D J, Calder A F, Kapinos V G, Wooding S J. Nucl Instrum Meth, 1995; 102B: 37
[21] Cheng J W, Zhang X M, WY Q, Wang X L, Zheng S B, Jiang G C. Acta Phys–Chim Sin, 2007; 23: 779
(程江伟, 张先明, 吴永全, 王秀丽, 郑少波, 蒋国昌. 物理化学学报, 2007; 23: 779)
[22] Smith W, Forester T R. J Mol Graph, 1996; 14: 336
[23] Allen M P, Tildesley D J. Computer Simulation of Liquid. New York: Oxford University Press, 1987: 28
[24] Ma J R, Chen L M. Metals Handbook. 9th Ed., Vol.2, Beijing: Machinery Industy Press, 1994: 89
(马九荣, 陈立敏. 金属手册. 第9版. 第2卷. 北京: 机械工业出版社, 1994: 89)
[25] Basinski Z S, Hume–Rothery W, Sutton A L. Proc R Soc Lond, 1955; 229A: 49
[26] Kirshenbaum A D, Cahill J A. Trans Met Soc, 1962; 224: 816
[27] Shibuta Y, Takamoto S, Suzuki T. ISIJ Int, 2008; 48: 1582
[28] Jeffrey P. Rep Prog Phys, 2001; 64: 777
[29] Massalski T B, Okamoto H, Tanner L. Binary Phase Diagrams. 2nd Ed., Ohio: ASM International, 1990: 30
[30] Wang H R, Ye Y F, Wang W M, Qin J Y. Chin Sci Bull, 2000; 45: 1501
(王焕荣, 叶以富, 王伟民, 秦敬玉. 科学通报, 2000; 45: 1501)
[31] Wu Y Q. PhD Thesis, Shanghai University, 2004
(吴永全. 上海大学博士学位论文, 2004)
[32] Shunchi N, Fumiko Y. J Chem Phys, 1986; 84: 1803
[33] Holender J M. Phys Rev, 1990; 41B: 8054 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|