Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (2): 172-178    DOI: 10.3724/SP.J.1037.2009.00327
论文 Current Issue | Archive | Adv Search |
MOLECULAR DYNAMICS SIMULATION OF PHASE TRANSFORMATION of  γ-Fe→δ-Fe→LIQUID–Fe IN CONTINUOUS TEMPERATURE–RISE PROCESS
LIU Yihu; WU Yongquan; SHEN Tong; WANG Zhaoke; JIANG Guochang
Shanghai Key Laboratory of Modern Metallurgy & Materials Processing; Shanghai University; Shanghai 200072
Cite this article: 

LIU Yihu WU Yongquan SHEN Tong WANG Zhaoke JIANG Guochang. MOLECULAR DYNAMICS SIMULATION OF PHASE TRANSFORMATION of  γ-Fe→δ-Fe→LIQUID–Fe IN CONTINUOUS TEMPERATURE–RISE PROCESS. Acta Metall Sin, 2010, 46(2): 172-178.

Download:  PDF(3036KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Understanding high–temperature phase transformations of pure Fe is fundamental for quality control and product design of steels. Various theoretical methods have been used to determine dynamically the mechanism of phase transformations in pure Fe including  γ–Fe to δ–Fe and δ–Fe to liquid–Fe. Among these methods, molecular dynamics (MD) simulation has become a prospective method, in which atomic interactions play a key role in phase transformations. However, most attention ws focused on the MD simulation of temperature–drop phase transformtions rather than temprture–rise phase transformations befor. In the present study the isothermal–isobaric MD simulation at a wide temperature range of  γ-Fe→δ-Fe→liquid–Fe transformations in pure Fe was carried out by giving a set of long–rnge Finnis–Sinclair potential parameters. The results show that a better agreemenbetween simultion nd experimental results for the microstructures (including radial distribution functions and coordination numbers) and densities of transformed phases validate that the set of potential parameters for the MD simulation are reasonable. The larger difference between the calculated and experimental trnsfrmation temperatureiattributed to the effect of superheat degree induced by ultrafast heating speed in the MD simulation. Evolvement of microsructures exibits lattice–distorting and sldng induced by  γ–Fe to δ-Fe phase ransformation and melting of δ–Fe islands from δ–Fe to liquid–Fe. Finall, in the MD simulation stronger and stronger fluctuations of instantaneous energy ad density just before transformations, especially melting, show an apparent pregnant process in phase transfrmations.

Key words:  pure Fe      temperture–rise phase transition      molecular dynamics      microstructure     
Received:  15 May 2009     
Fund: 

Supported by National Natural Science Foundation of China (Nos.50504010 and 50974083), Joint Funds of NSFC–Shanghai Baosteel Corporation (No.50774112), Shanghai Rising–Star Program (No.07QA14021), Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0739) and Innovation Program of Shanghai Municipal Education Commission (No.09YZ24)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00327     OR     https://www.ams.org.cn/EN/Y2010/V46/I2/172

[1] Daw M S, Baskes M I. Phys Rev, 1984; 29B: 6443
[2] Finnis M W, Sinclair J E. Philos Mag, 1984; 50A: 45
[3] Sutton A P, Chen J. Philos Mag Lett, 1990; 61: 139
[4] Lennad–Jones J E. Physica, 1937; 4A: 941
[5] Daw M S, Baskes M I. Phys Rev Lett, 1983; 50: 1285
[6] Ackland G J, Vitek V. Phys Rev, 1990; 45B: 10324
[7] Wen Y H, Zhu T, Cao L X, Wang C Y. Acta Phys Sin, 2003; 52: 2520
(文玉华, 朱弢, 曹立霞, 王崇愚. 物理学报, 2003; 52: 2520)
[8] Liu H Y, Wang X X, Wu H A, Wang Y. Acta Phys Sin, 2002; 51: 2308
[9] Yang Q W, Zhu R Z. Acta Phys Sin, 2005; 54: 4245
(杨全文, 朱如曾. 物理学报, 2005; 54: 4245)
[10] Daw M S, Foiles S M. Phys Rev Lett, 1987; 59: 2756
[11] Ackland G J, Tichy G, Vitek V, Finnis M W. Philos Mag, 1987; 56A: 735
[12] Li H, Wang G H, Ding F, Wang J L, Shen W F. Phys Lett, 2001; 280A: 325
[13] Shimomura Y, Sugio K, Kogure Y, Doyama M. Comput Mater Sci, 1999; 14: 36
[14] Li X H, Huang J F. J Solid State Chem, 2003; 176: 234
[15] Foiles S M. Surf Sci, 1987; 191: 329
[16] Ackland G J, Bacon D J, Calder A F, Harry T. Philos Mag, 1997; 75A: 713
[17] Belonoshko A B, Ahuja R, Johansson B. Phys Rev Lett, 200084: 3639
[18] Colakoglu K, Ugur G, Cakmak M, Tutuncu H M. Turk Phys, 1999; 23: 479
[19] Bacon D J, Diaz de la Rubia T J. Nucl Mater, 1994; 216: 275
[20] Bacon D J, Calder A F, Kapinos V G, Wooding S J. Nucl Instrum Meth, 1995; 102B: 37
[21] Cheng J W, Zhang X M, WY Q, Wang X L, Zheng S B, Jiang G C. Acta Phys–Chim Sin, 2007; 23: 779
(程江伟, 张先明, 吴永全, 王秀丽, 郑少波, 蒋国昌. 物理化学学报, 2007; 23: 779)
[22] Smith W, Forester T R. J Mol Graph, 1996; 14: 336
[23] Allen M P, Tildesley D J. Computer Simulation of Liquid. New York: Oxford University Press, 1987: 28
[24] Ma J R, Chen L M. Metals Handbook. 9th Ed., Vol.2, Beijing: Machinery Industy Press, 1994: 89
(马九荣, 陈立敏. 金属手册. 第9版. 第2卷. 北京: 机械工业出版社, 1994: 89)
[25] Basinski Z S, Hume–Rothery W, Sutton A L. Proc R Soc Lond, 1955; 229A: 49
[26] Kirshenbaum A D, Cahill J A. Trans Met Soc, 1962; 224: 816
[27] Shibuta Y, Takamoto S, Suzuki T. ISIJ Int, 2008; 48: 1582
[28] Jeffrey P. Rep Prog Phys, 2001; 64: 777
[29] Massalski T B, Okamoto H, Tanner L. Binary Phase Diagrams. 2nd Ed., Ohio: ASM International, 1990: 30
[30] Wang H R, Ye Y F, Wang W M, Qin J Y. Chin Sci Bull, 2000; 45: 1501
(王焕荣, 叶以富, 王伟民, 秦敬玉. 科学通报, 2000; 45: 1501)
[31] Wu Y Q. PhD Thesis, Shanghai University, 2004
(吴永全. 上海大学博士学位论文, 2004)
[32] Shunchi N, Fumiko Y. J Chem Phys, 1986; 84: 1803
[33] Holender J M. Phys Rev, 1990; 41B: 8054

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
No Suggested Reading articles found!