Please wait a minute...
Acta Metall Sin  1989, Vol. 25 Issue (6): 49-54    DOI:
Current Issue | Archive | Adv Search |
DUCTILE CRACK INITIATION AND STEADY-STATE PROPAGATION OF HIGH STRENGTH STRUCTURAL STEEL
CHEN Huangpu;DENG Zengjie Xi'an Jiaotong University CHEN Huangpu; The Research Institute for Strength of Metals; Xi'an Jiaotong Universify; Xi'an 710049
Cite this article: 

CHEN Huangpu;DENG Zengjie Xi'an Jiaotong University CHEN Huangpu; The Research Institute for Strength of Metals; Xi'an Jiaotong Universify; Xi'an 710049. DUCTILE CRACK INITIATION AND STEADY-STATE PROPAGATION OF HIGH STRENGTH STRUCTURAL STEEL. Acta Metall Sin, 1989, 25(6): 49-54.

Download:  PDF(457KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The resistance to crack propagation at earlier stage for a high strengthstructural steel of certain ductility with relation to its microstructures, stressstates, deformation history and strain characteristic has been investigated. The resist-ance to crack propagation is mainly determined by the plastic constrain ahead ofthe crack tip and the elastic energy and plastic work absorbed in the stress-strainfield. These are connected with the state function of triaxial stress. The deforma-tion history and strain characteristic during deformation of material are describedby the flow line in which the deformation history and strain characteristic re-strain the crack initiation at stage II and the crack propagation at stage III. Thestrain hardening rate may sensitively reflect the stress distribution and micro-frac-ture mechanism in the interior of material.
Key words:  high strength structural steel      microstructure      stress state      strain characteristic     
Received:  18 June 1989     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1989/V25/I6/49

1 陈黄浦.西安交通大学硕士学位论文,1988
2 Rice J R, Tracey D M. J Mech Phys Solids, 1969; 17: 201
3 Bates R C. In: Wells J M, Landes J D eds., Fracture: Interaction of Microstructure, Mechanisms and Mechanics, New Yo k: AIME, 1984: 117
4 Shin C F, Kumar V, German M D. ASTM STP 803, 1983: Ⅱ--239
5 陈黄浦,金达曾,邓增杰.西安交通大学学报,1986;20(6) :41
6 McClintock F A. Trans ASME E: J Appl Mech, 1968; 35: 363
7 Beachem C D. ASM Trans Q, 1963; 56: 318
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!