Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (2): 203-210    DOI: 10.11900/0412.1961.2024.00412
Classics of the Masters Current Issue | Archive | Adv Search |
Metal Chain Creation
LI Dianzhong(), HU Xiaoqiang, WANG Pei
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LI Dianzhong, HU Xiaoqiang, WANG Pei. Metal Chain Creation. Acta Metall Sin, 2025, 61(2): 203-210.

Download:  HTML  PDF(16272KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The manufacture of metallic components involves alloy design, raw material preparation, melting, ingot/slab casting, hot forging or rolling, heat treatment, and precision cold processing etc. Consequently, research on the entire life cycle of metal production and application is imperative. Only by integrating the complete life cycle of the technological chain can the properties of metals be fully and appropriately utilized. Previous research has primarily focused on breakthroughs at individual “points”, often neglecting the “chain”. This has led to a “chain break” phenomenon in the processing of metal materials and components, resulting in high-end components that are unqualified, unstable, unreliable, or heavily dependent on imports. To address these issues, this study takes the research on the 8-meter-diameter main bearing of a shield tunneling machine as an example. It adopts novel V, B, and rare earth co-alloying in bearing steel for bearing rings, leveraging high-purity and high-homogeneity bearing steel production, as well as precision machining of high-performance bearing components. The study elucidates key technologies and their correlations throughout the bearing manufacturing process, with a particular focus on heat treatment technology that linking bearing materials to components and precision machining technology for large rollers. Through the development of whole-chain technologies, the main bearing for the shield tunneling machine was successfully manufactured. Building upon this research, a new concept of metal chain creation is proposed. This concept begins with alloy design and connects the entire chain of raw material preparation, melting, ingot/slab casting, hot forging or rolling, heat treatment, and precision cold processing, assembly manufacturing, evaluation, and application test. By identifying and manipulating critical data at each stage of the process, iterative optimization is achieved. This approach integrates the technological chain, fosters an innovation chain, connects the industrial chain, and realizes controllable manufacturing of metal materials and high-end components.

Key words:  metal chain      alloy design      hot working      cold working      creation     
Received:  02 December 2024     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(52031013; 52321001);Strategic Priority Research Program of the Chinese Academy of Sciences(XDC04000000)
Corresponding Authors:  LI Dianzhong, Academician of Chinese Academy of Science, professor, Tel: (024)83971281, E-mail: dzli@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00412     OR     https://www.ams.org.cn/EN/Y2025/V61/I2/203

Fig.1  Technology chain and production bases for the manufacturing of high-end precision machine tool main bearings
Fig.2  Comparisons of inclusion size and morphology between imported bearing steel (a) and bearing steel with rare earth addition (b)
Fig.3  Photo of the 8-meter-diameter main bearing of shield tunneling machine
Fig.4  Schematic of metal chain creation
1 Wang F, Song M, Elkot M N, et al. Shearing brittle intermetallics enhances cryogenic strength and ductility of steels [J]. Science, 2024, 384: 1017
doi: 10.1126/science.ado2919 pmid: 38815014
2 Qu Z, Zhang Z J, Liu R, et al. High fatigue resistance in a titanium alloy via near-void-free 3D printing [J]. Nature, 2024, 626: 999
3 Zhang S J, To S, Wang S J, et al. A review of surface roughness generation in ultra-precision machining [J]. Int. J. Mach. Tools Manuf., 2015, 91:76
4 Zhu W L, Beaucamp A. Compliant grinding and polishing: A review [J]. Int. J. Mach. Tools Manuf., 2020, 158: 103634
5 Xing J N. Influence of heat treatment process on microstructure and properties of large-scale ring components [D]. Shenyang: Shenyang Jianzhu University, 2023
邢嘉妮. 热处理工艺对大型环状构件组织与性能的影响 [D]. 沈阳: 沈阳建筑大学, 2023
6 Liang Y X, Cai X, Zheng L G, et al. Effect of secondary tempering on microstructure and properties of 42CrMo4M steel [J]. Trans. Mater. Heat Treat. 2023, 44(8): 106
梁雅鑫, 蔡 欣, 郑雷刚 等. 二次回火对42CrMo4M组织性能的影响 [J]. 材料热处理学报. 2023, 44(8): 106
7 Liang Y X. Development and application of secondary tempering process for large toroidal components in 42CrMo4M [D]. Shenyang: University of Science and Technology of China, 2023
梁雅鑫. 大型环形构件用42CrMo4M钢二次回火工艺开发与应用 [D]. 沈阳: 中国科学技术大学, 2023
8 Hu X Q, Feng S B, Gao Y. “ Research and development of main bearings for super large diameter shield machines” Technology report of Strategic Priority Research Program of the Chinese Academy of Sciences [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2023
胡小强, 封少波, 高 洋. “超大直径盾构机用主轴承研制”中国科学院战略性先导科技专项科技报告 [R]. 沈阳: 中国科学院金属研究所, 2023
9 Hu X Q, Li D Z. Research and application of 42CrMo4M steel for main bearing large ring of shield machine [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2024
胡小强, 李殿中. 盾构机主轴承大型套圈用42CrMo4M钢研发与应用 [R]. 沈阳: 中国科学院金属研究所, 2024
10 Li D Z, Chen X Q, Fu P X, et al. Inclusion fotation-driven channel segregation in solidifying steels [J]. Nat. Commun., 2014, 5: 5572
11 Cao Y F, Chen Y, Li D Z. Formation mechanism of channel segregation in carbon steels by inclusion flotation: X-ray microtomography characterization and multi-phase flow modeling [J]. Acta. Mater., 2016, 107: 325
12 Li D Z, Wang P, Chen X Q, et al. Low-oxygen rare earth steels [J]. Nat. Mater., 2022, 21: 1137
doi: 10.1038/s41563-022-01352-9 pmid: 36075967
13 Li Y H, Jiang Z H, Wang P, et al. Effect of a modified quenching on impact toughness of 52100 bearing steels [J]. J. Mater. Sci. Technol., 2023, 160: 96
doi: 10.1016/j.jmst.2023.02.057
14 Liu T Y, Xia Y F, Li R H, et al. The combined effects of carbides and martensite blocks heterogeneity on the fatigue life scatter in bearing steel [J]. Mater. Sci. Eng., 2024, A915: 147277
15 Li Y H, Jiang Z H, Li L L, et al. Wear behavior and damage characterization for AISI 52100 bearing steels: Effect of hardness and spherical carbides [J]. J. Mater. Res. Technol., 2024, 30: 8359
16 Li Y H, Jiang Z H, Wang P, et al. Effect of austenitizing temperature on isothermal quenching microstructure and mechanical properties of 52100 bearing steel [J]. Mater. Sci. Eng., 2024, A892: 146051
17 Li Z, Fu Z H, Yang C Y, et al. Improving the microstructure and impact toughness of bainite/martensite bearing steel by rare earth treatment [J]. Metall. Mater. Trans., 2024, 55: 4965
18 Li D Z, Wang P. Tailoring microstructures of metals [J]. Acta. Metall. Sin., 2023, 59: 447
doi: 10.11900/0412.1961.2022.00555
李殿中, 王 培. 金属材料的组织定制 [J]. 金属学报, 2023, 59: 447
doi: 10.11900/0412.1961.2022.00555
19 Xing J N, Cai X, Zheng L G, et al. Effect of quenching and tempering temperature on microstructure and mechanical properties of a new medium carbon alloy steel 42CrMo4M [J]. Trans. Mater. Heat Treat., 2022, 43(5): 124
邢嘉倪, 蔡 欣, 郑雷刚 等. 淬火及回火温度对新型中碳合金钢42CrMo4M组织性能的影响 [J]. 材料热处理学报 2022, 43(5):124
doi: 10.13289/j.issn.1009-6264.2021-0581
20 Wei S T, Wu C J, Zheng L G, et al. Effect of surface quenching process on hardened layer of 42CrMo steel for large bearing ring [J]. Heat Treat. Met., 2022, 47(10): 218
doi: 10.13251/j.issn.0254-6051.2022.10.037
魏世同, 吴长江, 郑雷刚 等. 表面淬火工艺对大型轴承套圈用42CrMo钢淬硬层的影响 [J]. 金属热处理, 2022, 47(10): 218
doi: 10.13251/j.issn.0254-6051.2022.10.037
21 Wu C J. Study on surface quenching technology and properties of thick and large section 42CrMo steel [D]. Shenyang: Shenyang University of Technology, 2023
吴长江. 厚大断面42CrMo钢表淬工艺与性能研究 [D]. 沈阳: 沈阳工业大学, 2023
22 Feng S B, Wu C J, Yuan L, et al. Research and application of surface quenching process for rings of main slewing bearing used in shield tunneling machines [J]. Bearing, 2024, 11: 121
封少波, 吴长江, 袁 麟 等. 盾构机主轴承套圈表面淬火工艺研究及应用 [J]. 轴承, 2024, 11: 121
23 Hu X Q, Feng S B, Gao Y, et al. Review materials of the main bearing with a diameter of 8.01 m for super large shield [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2023
胡小强, 封少波, 高 洋 等. 超大直径盾构机用Ф8.01米主轴承评审材料 [R]. 沈阳: 中国科学院金属研究所, 2023
24 Hu X Q. Final research project report on bearing steels with medium carbon content and their heat-treatment processes supported by the Strategic Priority Research Program of the Chinese Academy of Sciences [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2024
胡小强. 中碳轴承钢材料与热处理先导专项课题实施绩效报告 [R]. 沈阳: 中国科学院金属研究所, 2024
25 Liu S, Yan Y, Wang B, et al. Effect of heat treatment on strengthening and toughening mechanism of 42CrMoVRE steel [J]. Trans. Mater. Heat Treat., 2023, 44(6): 90
刘 帅, 颜 莹, 王 斌 等. 热处理对42CrMoVRE钢强韧化机制的影响 [J]. 材料热处理学报, 2023, 44(6): 90
26 Qian Q H, Hu X Q, Li S C, et al. Recent advances in key technologies of shield tunnel engineering in China [J]. Tunnel Construction, 2024, 44(5): 897
钱七虎, 胡小强, 李树忱 等. 中国盾构隧道工程关键技术的新进展综述 [J]. 隧道建设(中英文), 2024, 44(5): 897
27 Hu X Q. Logarithmic convexity design and machining of large rollers [R]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2021
胡小强. 大型滚子对数凸度设计与加工 [R]. 沈阳: 中国科学院金属研究所, 2021
[1] WANG Chenchong, XU Wei. Overview: Integration and Development of Physical Models and Artificial Intelligence in Alloy Design[J]. 金属学报, 2025, 61(4): 541-560.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[5] ZHANG Rui, LIU Peng, CUI Chuanyong, QU Jinglong, ZHANG Beijiang, DU Jinhui, ZHOU Yizhou, SUN Xiaofeng. Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China[J]. 金属学报, 2021, 57(10): 1215-1228.
[6] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[7] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
[8] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[9] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[10] Hai ZHANG,Shilei LI,Gang LIU,Yanli WANG. Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel[J]. 金属学报, 2017, 53(5): 531-538.
[11] Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. 金属学报, 2017, 53(10): 1238-1264.
[12] Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM[J]. 金属学报, 2016, 52(10): 1267-1278.
[13] Yuefeng GU,Chuanyong CUI,Yong YUAN,Zhihong ZHONG. RESEARCH PROGRESS IN A HIGH PERFORMANCE CAST & WROUGHT SUPERALLOY FOR TURBINE DISC APPLICATIONS[J]. 金属学报, 2015, 51(10): 1191-1206.
[14] SHI Zhangzhi ZHANG Wenzheng. DESIGNING Mg-Sn-Mn ALLOY BASED ON CRYSTALLOGRAPHY OF PHASE TRANSFORMATION[J]. 金属学报, 2011, 47(1): 41-46.
[15] ZHANG Beijiang; ZHAO Guangpu; XU Guohua; FENG Di. Hot deformation behavior and micro-structure evolution of superalloy GH742[J]. 金属学报, 2005, 41(11): 1207-1214 .
No Suggested Reading articles found!