Development and Application of Novel Biomedical Titanium Alloy Materials
Zhentao YU1,2(), Sen YU1,2, Jun CHENG1,2, Xiqun MA1,2
1 Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China 2 Shaanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-Ferrous Metal Research, Xi'an 710016, China
Cite this article:
Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials. Acta Metall Sin, 2017, 53(10): 1238-1264.
Biomedical titanium alloy materials have become the main raw materials for orthopedic, dental and cardiovascular implants or devices, but their biological and mechanical compatibility remains to be improved to meet the long-term safety and function in services for clinical application. Whether developing the novel medical titanium alloys with high-strength, low-modulus and other finer comprehensive performance, or upgrading and optimizing the traditional medical titanium alloys, it is the foundation and key to ensuring the structure homogeneity, high performance, versatility and low cost of biomedical titanium alloy materials and expanding its clinical application. The design, physical metallurgy, materials process, microstructure and properties, surface modification, advanced manufacturing and the clinical application of biomedical titanium alloys were introduced, and their latest research progress was reviewed in this paper, together with the recent advances in the author's R & D team. Finally, the further research and development trend of biomedical titanium alloys are summarized.
Fund: Supported by National Natural Science Foundation of China (No.31400821), National Key Research and Development Program of China (No.2016YFC1102003), Key Science and Technology Innovation Team of Shaanxi Province (No.2016KCT-30) and Science and Technology Achievements Transformation Project of Shaanxi Province (No.2016KTCG01-04)
Table 1 Mechanical properties of some typical newly developed titanium alloys used for biomedical application
Project name
EBCHM
PCHM
VAR
NC
CCM
ESR
Material status
Bulk, bar
Bulk, bar
Consumable
Bulk
Bulk
Bar electrode
electrode
Ingot size
Large, midsize,
Large, midsize,
Large,
Midsize, small
Midsize, small
Midsize, small
small
small
midsize, small
End face shape of ingot
Circular and
Circular and
Circular
Circular and
Circular and
Circular and
dysmorphism
dysmorphism
dysmorphism
dysmorphism
dysmorphism
Deaeration effect
Optimum
Limited
Limited
Limited
Limited
Limited
Vacuum / Pa
0.1~0.133
Inactive gas
0.013~6.65
Inactive gas
Inactive gas
Inactive gas
0.133~101325
2660~3990
33250~50540
Composition control
Burning
Fine
Easy to
General
Easy
Unmanageable
ingredient,
control, good
unmanageable
Surface quality
Good
Good
General
General
General
Better
Melting rate / (kgh?1)
500~1800
600~900
800~2000
300~800
400
-
Foundry returns using
Larger
Larger
Limited
Larger
Limited
Limited
Specific electric energy
Larger
Larger
Smaller
Larger
Bigger
Bigger
consume
Manipulation difficulty
Hard
Common
Easy
Common
Common
Common
Equipment investment
Highest
Higher
Low
Lower
Common
Common
Table 2 Comparisons of several vacuum melting methods
Fig.1 TNTZ (Ti-29Nb-13Ta-4.6Zr) alloy (a) ingot (b) macrostructure (c) microstructure (d) hot rolled plate (e) as rolled microstructure
Fig.2 Ingot (a), hot rolled bar (b) and as rolled microstructure (c) of Ti-3.5Cu alloy
Nominal composition
Zr
Fe
Si
C
N
H
O
Ti
Ti-1Zr
0.98
0.01
<0.04
0.021
0.007
0.0009
0.078
Bal.
Ti-2Zr
1.98
0.01
<0.04
0.019
0.014
0.0010
0.082
Bal.
Ti-16Zr
16.30
0.02
<0.04
0.015
0.013
0.0010
0.090
Bal.
Ti-20Zr
20.90
0.01
<0.04
0.014
0.014
0.0010
0.084
Bal.
Ti-35Zr
35.71
0.03
<0.01
0.008
0.003
0.0010
0.086
Bal.
Ti-50Zr
48.52
0.05
<0.01
0.010
0.015
0.0010
0.081
Bal.
Ti-60Zr
58.40
0.02
<0.04
0.008
0.009
0.0037
0.088
Bal.
Table 3 Chemical compositions of Ti-Zr system alloys (mass fraction / %)
Fig.3 Microstructures of Ti-5Nb (a), Ti-10Nb (b), Ti-15Nb (c), Ti-20Nb (d) and Ti-25Nb (e) alloys bar
Condition
Yield strength
Ultimate strength
Elongation
Elastic modulus
Yielding-to-tensile
MPa
MPa
%
GPa
ratio
1 layer (cold rolled)
445
805
1.5
59.6
0.5528
2 layers
445
990
3.5
65.0
0.4495
4 layers
800
1120
4.5
63.7
0.7143
8 layers
955
1200
5.0
67.4
0.7958
Table 4 Mechanical properties of ultra fine grain TLM alloy foil
Fig.4 Macrostructure (a) and microstructure (b) of cylinder porous TLM alloy specimen with porosity 64.5%, and relationship between porosity and elastic modulus (c)
Fig.5 Phase composition (a) and room temperature mechanical properties (b) of TLM alloy after solution treatment (ST) and ageing treatment
Biological evaluation
National/international standard
Material chemical characterization
GB/T16886.18-2011/ISO10993-18: 2005
Sample preparation and reference materials
GB/T16886.12/ISO10993-12: 2007
Test for in-vitro cytotoxicity
GB/T16886.5/ISO10993-5: 2009
Test for irritation and skin sensitization
GB/T16886.10/ISO10993-10: 2010
Test for systemic toxicity
GB/T16886.11-2011/ISO10993-11: 2006
Test for genotoxicity, carcinogenicity and reproductive toxicity
GB/T16886.3-2008/ISO10993-3: 2003
Test for partial biological effects of implants
GB/T16886.6/ISO10993-6: 2007
Selection of tests for interactions with blood
GB/T16886.4-2003/ISO10993-4: 2002
Qualitative and quantitative analyses for degradation products of metal and alloy
GB/T16886.15-2003/ISO10993-15: 2000
Toxicokinetic study design for degradation products and leachables
GB/T16886.16/ISO10993-16: 2010
Principles and methods for immunotoxicology testing of medical devices
Fig.6 Morphology of TLM alloy after surface dealloying
Fig.7 Porous TLM alloy implant materials with bone trabecula prepared by selective laser melting (SLM)
[1]
Niinomi M.Recent metallic materials for biomedical applications[J]. Metall. Mater. Trans., 2002, 33A: 477
[2]
Bothe R T, Beaton L E, Davenport H A.Reaction of bone to multiple metallic implants[J]. Surg. Gynecol. Obstet., 1940, 71: 598
[3]
Leventhal G S.Titanium, a metal for surgery[J]. J. Bone Joint Surg. Am., 1951, 33A: 473
[4]
Br?nemark P I, Breine U, Adell R, et al.Intra-osseous anchorage of dental prostheses: I. Experimental studies[J]. Scand. J. Plast. Reconstr. Surg., 1969, 3: 81
[5]
Br?nemark P, Hansson B, Adell R, et al.Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period[J]. Scand. J. Plast. Reconstr. Surg. Suppl., 1977, 16: 1
[6]
Geetha M, Singh A K, Asokamani R, et al.Ti based biomaterials, the ultimate choice for orthopaedic implants—A review[J]. Prog. Mater. Sci., 2009, 54: 397
[7]
Long M, Rack H J.Titanium alloys in total joint replacement—A materials science perspective[J]. Biomaterials, 1998, 19: 1621
[8]
Kuroda D, Niinomi M, Morinaga M, et al.Design and mechanical properties of new β type titanium alloys for implant materials[J]. Mater. Sci. Eng., 1998, A243: 244
[9]
Niinomi M.Recent research and development in titanium alloys for biomedical applications and healthcare goods[J]. Sci. Technol. Adv. Mater., 2003, 4: 445
[10]
Rack H J, Qazi J I.Titanium alloys for biomedical applications[J]. Mater. Sci. Eng., 2006, C26: 1269
[11]
Semlitsch M, Staub F, Weber H.Titanium-aluminium-niobium alloy, development for biocompatible, high strength surgical implants[J]. Biomed. Eng., 1985, 30: 334
[12]
Eisenbarth E, Velten D, Müller M, et al.Biocompatibility of β-stabilizing elements of titanium alloys[J]. Biomaterials, 2004, 25: 5705
[13]
Wang K.The use of titanium for medical applications in the USA[J]. Mater. Sci. Eng., 1996, A213: 134
[14]
Yu Z T, Zhang Y F, Yuan S B, et al.Microstructure and wear resistance of a novel Ti4Zr1Sn3Mo25Nb (TLM) alloy[J]. Rare. Met. Mater. Eng., 2008, 37(suppl. 4): 542(于振涛, 张亚锋, 袁思波等. 近β型钛合金Ti4Zr1Sn3Mo25Nb (TLM)热处理与材料强化研究[J]. 稀有金属材料与工程, 2008, 37(增刊4): 542)
[15]
Yu Z T, Zhang Y F, Liu H, et al.Effects of alloy elements, processing and heat treatment on mechanical properties of a near β type biomedical titanium alloy TiZrMoNb and microstructure analysis, Rare Met. Mater. Eng., 2010, 39: 1795(于振涛, 张亚峰, 刘辉等. 合金元素、加工与热处理对新型近β型钛合金TiZrMoNb力学性能的影响及微观分析[J]. 稀有金属材料与工程, 2010, 39: 1795)
[16]
Yu Z T, Zhang M H, Tian Y X, et al.Designation and development of biomedical Ti alloys with finer biomechanical compatibility in long-term surgical implants[J]. Front. Mater. Sci., 2014, 8: 219
[17]
Song Y, Xu D S, Yang R, et al.Theoretical study of the effects of alloying elements on the strength and modulus of β-type bio-titanium alloys[J]. Mater. Sci. Eng., 1999, A260: 269
[18]
Van Noort R.Titanium: The implant material of today[J]. J. Mater. Sci., 1987, 22: 3801
[19]
Takahashi E, Sakurai T, Watanabe S, et al.Effect of heat treatment and Sn content on superelasticity in biocompatible TiNbSn alloys[J]. Mater. Trans., 2002, 43: 2978
Obbard E G, Hao Y L, Talling R J, et al.The effect of oxygen on α″ martensite and super elasticity in Ti-24Nb-4Zr-8Sn[J]. Acta Mater., 2011, 59: 112
[22]
Banerjee R, Nag S, Fraser H L.A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants[J]. Mater. Sci. Eng., 2005, C25: 282
[23]
Hu Q M, Li S J, Hao Y L, et al.Phase stability and elastic modulus of Ti alloys containing Nb, Zr, and/or Sn from first-principles calculations[J]. Appl. Phys. Lett., 2008, 93: 121902
[24]
Zhao L C, Cui C X, Liu S J, et al.Design and research on properties of new type metastable β-titanium alloys for biomedical applications based on the d-electron alloy design method[J]. Rare Met. Mater. Eng., 2008, 37: 108(赵立臣, 崔春翔, 刘双进等. 基于d电子合金设计方法的生物医用新型亚稳β钛合金的设计及性能研究[J]. 稀有金属材料与工程, 2008, 37: 108)
[25]
Yu Z T, Yu S, Zhang M H, et al.Design, development and application of novel biomedical Ti alloy materials applied in surgical implants[J]. Mater. China, 2010, 29(12): 35(于振涛, 余森, 张明华等. 外科植入物用新型医用钛合金材料设计, 开发与应用现状及进展[J]. 中国材料进展, 2010, 29(12): 35)
[26]
Saito T, Furuta T, Hwang J H, et al.Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism[J]. Science, 2003, 300: 464
[27]
Fu Y Y, Yu Z T, Zhou L, et al.Influence of microstructure on tensile strength and fracture toughness of a Ti-13Nb-13Zr alloy[J]. Rare Met. Mater. Eng., 2005, 34: 881(付艳艳, 于振涛, 周廉等. 显微组织对Ti-13Nb-13Zr医用钛合金力学性能的影响[J]. 稀有金属材料与工程, 2005, 34: 881)
[28]
Eylon D, Vassel A, Combres Y, et al.Issues in the development of beta titanium alloys[J]. JOM, 1994, 46(7): 14
[29]
Liang S J, Hou F Q, Li Y H, et al.Microstructure and mechanical properties of Ti45Nb wires used in aviation rivets[J]. Rare Met. Mater. Eng., 2015, 44: 2203(梁书锦, 侯峰起, 李英浩等. 航空紧固件用Ti-45Nb合金丝材的组织和性能[J]. 稀有金属材料与工程, 2015, 44: 2203)
[30]
Niinomi M, Hattori T, Morikawa K, et al.Development of low rigidity β-type titanium alloy for biomedical applications[J]. Mater. Trans., 2002, 43: 2970
[31]
Liu H H, Niinomi M, Nakai M, et al.Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture[J]. J. Mech. Behav. Biomed. Mater., 2014, 30: 205
[32]
Li Q, Niinomi M, Hieda J, et al.Deformation-induced ω phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition[J]. Acta Biomater., 2013, 9: 8027
[33]
Yilmazer H, Niinomi M, Nakai M, et al.Mechanical properties of a medical β-type titanium alloy with specific microstructural evolution through high-pressure torsion[J]. Mater. Sci. Eng., 2013, C33: 2499
[34]
Niinomi M, Nakai M, Hieda J.Development of new metallic alloys for biomedical applications[J]. Acta Biomater., 2012, 8: 3888
[35]
Zhao X F, Niinomi M, Nakai M, et al.Optimization of Cr content of metastable β-type Ti-Cr alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 2392
[36]
Zhao X L, Niinomi M, Nakai M.Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 2009
[37]
Zhao X L, Niinomi M, Nakai M, et al.Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2011, 7: 3230
[38]
Lütjering G, Williams J C.Titanium[M]. Berlin Heidelberg: Springer, 2007: 59
[39]
Zhang Y M, Zhou L, Sun J, et al.Progress of vacuum arc remelting technology of titanium alloys[J]. Rare Met. Lett., 2008, 27(5): 9(张英明, 周廉, 孙军等. 钛合金真空自耗电弧熔炼技术发展[J]. 稀有金属快报, 2008, 27(5): 9)
[40]
Lei W G, Zhao Y Q, Han D, et al.Development of melting technology for titanium and titanium alloys[J]. Mater. Rev., 2016, 30(5): 101(雷文光, 赵永庆, 韩栋等. 钛及钛合金熔炼技术发展现状[J]. 材料导报, 2016, 30(5): 101)
[41]
Wang C, Mao X N, Yu L L, et al.Development of melting technology of titanium alloys[J]. Hot Work. Technol., 2009, 38(17): 42(王琛, 毛小南, 于兰兰等. 钛合金熔炼技术的进展[J]. 热加工工艺, 2009, 38(17): 42)
[42]
Fox S, Patel A, Tripp D, et al.Recent developments in melting and casting technologies for titanium alloys [A]. Proceedings of the 13th World Conference on Titanium[C]. The Minerals, Metals & Materials Society, 2016
[43]
Zhang L J, Zhou Z B, Chang H, et al.Segregation behavior and prevention measures of beta titanium alloy with high molybdenum content[J]. Chin. J. Nonferrous. Met., 2013, 23: 2206(张利军, 周中波, 常辉等. 高钼含量β型钛合金的偏析行为及预防措施[J]. 中国有色金属学报, 2013, 23: 2206)
[44]
Sakamoto K, Kusamichi T, Nakagawa T, et al.Simulation on macro segregation in large forging ingots and VAR ingots[J]. J. Jpn Foundry Eng. Soc., 1998, 70: 21
[45]
Leder M O, Gorina A V, Kornilova M A, et al.Definition method of thermal-physics properties of titanium alloys and boundary data parameters for vacuum arc remelting process[J]. Tsvetn. Met., 2016, (4): 70
[46]
Ballantyne A S.The development and application of an integrated VAR process model[J]. BHM Berg, 2016, 161(suppl. 1): 12
[47]
Zheng Y B, Chen Z Q, Chen F, et al.Control of copper segregation for large size TA13 Titanium alloy ingot[J]. Titanium Ind. Prog., 2011, 28(4): 32(郑亚波, 陈战乾, 陈峰等. 大规格TA13钛合金铸锭Cu偏析控制[J]. 钛工业进展, 2011, 28(4): 32)
[48]
Zhao Y Q, Liu J L, Zhou L.Analysis on the segregation of typical β alloying elements of Cu, Fe and Cr in Ti alloys[J]. Rare Met. Mater. Eng., 2005, 34: 531(赵永庆, 刘军林, 周廉. 典型β型钛合金元素Cu, Fe和Cr的偏析规律[J]. 稀有金属材料与工程, 2005, 34: 531)
[49]
Mir H E, Jardy A, Bellot J P, et al.Thermal behaviour of the consumable electrode in the vacuum arc remelting process[J]. J. Mater. Process. Technol., 2010, 210: 564
[50]
Sankar M, Prasad V V S, Baligidad R G, et al. Effect of vacuum arc remelting and processing parameters on structure and properties of high purity niobium[J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 120
[51]
Kou H C, Zhang Y J, Li P F, et al.Numerical simulation of titanium alloy ingot solidification structure during VAR process based on three-dimensional CAFé method[J]. Rare Met. Mater. Eng., 2014, 43: 1537
[52]
Zhang Y J, Kou H C, Li P F, et al.Simulation on solidification structure and shrinkage porosity (hole) in TC4 ingot during vacuum arc remelting process[J]. Spec. Cast. Nonferrous Alloys, 2012, 32: 418(张颖娟, 寇宏超, 李鹏飞等. 真空自耗电弧熔炼TC4铸锭的凝固组织和缩松缩孔的模拟[J]. 特种铸造及有色合金, 2012, 32: 418)
[53]
Kennedy R L, Jones R M F, Davis R M, et al. Superalloys made by conventional vacuum melting and a novel spray forming process[J]. Vacuum, 1996, 47: 819
[54]
Zhang W, Lee P D, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of INCONEL718[J]. Metall. Mater. Trans., 2002, 33A: 443
[55]
Xu X, Zhang W, Lee P D.Tree-ring formation during vacuum arc remelting of INCONEL 718: Part II. Mathematical modeling[J]. Metall. Mater. Trans., 2002, 33A: 1805
[56]
Gartling D K, Sackinger P A.Finite element simulation of vacuum arc remelting[J]. Int. J. Numer. Methods Fluids, 1997, 24: 1271
[57]
Tomono H, Hitomi Y, Ura S, et al.Mechanism of formation of the V-shaped segregation in the large section continuous cast bloom[J]. Trans. Iron Steel Inst. Japan, 1984, 24: 917
[58]
Xu X, Ward R M, Jacobs M H, et al.Tree-ring formation during vacuum arc remelting of INCONEL 718: Part I. Experimental investigation[J]. Metall. Mater. Trans., 2002, 33A: 1795
[59]
Yang Z J.Coupling of multi-fields in VAR process of titanium alloy and its effects on the solidification behaviors [D]. Xi'an: Northwestern Polytechnical University, 2011(杨治军. 钛合金VAR过程多场耦合及其对凝固行为的影响 [D]. 西安: 西北工业大学, 2011)
[60]
Fedotov S G, Chelidze T V, Kovneristyy Y K, et al.Phase transformations during heating of metastable alloys of the Ti-Ta system[J]. Phys. Met. Metallogr., 1986, 62: 109
[61]
Zhou Y L, Niinomi M, Akahori T.Effects of Ta content on Young's modulus and tensile properties of binary Ti-Ta alloys for biomedical applications[J]. Mater. Sci. Eng., 2004, A371: 283
[62]
Margevicius R W, Cotton J D.Stress-assisted transformation in Ti-60 wt pct Ta alloys[J]. Metall. Mater. Trans., 1998, 29A: 139
[63]
Wang L, Lu W, Qin J, et al.Texture and superelastic behavior of cold-rolled TiNbTaZr alloy[J]. Mater. Sci. Eng., 2008, A491: 372
[64]
Takahashi M, Kikuchi M, Takada Y, et al.Mechanical properties and microstructures of dental cast Ti-Ag and Ti-Cu alloys[J]. Dent. Mater. J., 2002, 21: 270
[65]
Hamzah E, Hastuti K, Hashim J.Effect of ageing temperature on the microstructures and mechanical properties of Ti-Nb shape memory alloys[J]. Adv. Mater. Res., 2014, 1024: 304
[66]
Inamura T, Kim J I, Kim H Y, et al.Composition dependent crystallography of α″-martensite in Ti-Nb-based β-titanium alloy[J]. Philos. Mag., 2007, 87: 3325
Valiev R Z, Langdon T G.Achieving exceptional grain refinement through severe plastic deformation: New approaches for improving the processing technology[J]. Metall. Mater. Trans., 2011, 42A: 2942
[69]
Valiev R Z, Langdon T G.Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Prog. Mater Sci., 2006, 51: 881
[70]
Zhu Y T, Liao X Z.Nanostructured metals: Rretaining ductility[J]. Nat. Mater., 2004, 3: 351
[71]
Zhu Y T, Lowe T C, Valiev R Z, et al.Ultrafine-grained titanium for medical implants [P]. US Pat, 6399215 B1, 2002
[72]
Yu Z, Ma X, Wang G, et al.Microstructure and mechanical properties of biomedical near-β Ti alloy TLM with nanostructure by ARB process [J], Ti 2011-Proceeding of the 12th World Conference on Titanium [C], Science Press, 2012: 2054
[73]
Ma X Q, Yu Z T, Niu J L, et al.Microstructure and properties of ultrafine grained TLM alloy ARB sheet[J]. Rare Met. Mater. Eng., 2014, 43(suppl. 1): 152(麻西群, 于振涛, 牛金龙等. 超细晶TLM钛合金复合板材的组织与性能[J]. 稀有金属材料与工程, 2014, 43(增刊1): 152
[74]
Kent D, Wang G, Yu Z T, et al.Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique[J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 405
[75]
Buettner K M, Valentine A M.Bioinorganic chemistry of titanium[J]. Chem. Rev., 2012, 112: 1863
[76]
Bertollo N, Da Assuncao R, Hancock N J, et al.Influence of electron beam melting manufactured implants on ingrowth and shear strength in an ovine model[J]. J. Arthroplasty, 2012, 27: 1429
[77]
Butscher A, Bohner M, Hofmann S, et al.Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing[J]. Acta Biomater., 2011, 7: 907
[78]
Bartolo P, Kruth J P, Silva J, et al.Biomedical production of implants by additive electro-chemical and physical processes[J]. CIRP Ann.-Manuf. Technol., 2012, 61: 635
[79]
Wehm?ller M, Warnke P H, Zilian C, et al.Implant design and production—A new approach by selective laser melting[J]. Int. Congress Ser., 2005, 1281: 690
[80]
Tian Y X, Yu Z T, Ong C Y A, et al. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents[J]. J. Mech. Behav. Biomed. Mater., 2015, 45: 132
[81]
Yu S, Yu Z T, Wang G, et al.Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo- 25Nb biomedical alloy[J]. Colloids Surf., 2011, 85B: 103
[82]
Bansiddhi A, Sargeant T D, Stupp S I, et al.Porous NiTi for bone implants: A review[J]. Acta Biomater., 2008, 4: 773
[83]
Bose S, Vahabzadeh S, Bandyopadhyay A.Bone tissue engineering using 3D printing[J]. Mater. Today, 2013, 16: 496
[84]
Li J P, Habibovic P, van den Doel M, et al. Bone ingrowth in porous titanium implants produced by 3D fiber deposition[J]. Biomaterials, 2007, 28: 2810
[85]
Parthasarathy J, Starly B, Raman S, et al.Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. J. Mech. Behav. Biomed. Mater., 2010, 3: 249
[86]
Pattanayak D K, Fukuda A, Matsushita T, et al.Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments[J]. Acta Biomater., 2011, 7: 1398
[87]
Murr L E, Martinez E, Amato K N, et al.Fabrication of metal and alloy components by additive manufacturing: Examples of 3D materials science[J]. J. Mater. Res. Technol., 2012, 1: 42
[88]
St-Pierre J P, Gauthier M, Lefebvre L P, et al. Three-dimensional growth of differentiating MC3T3-E1 pre-osteoblasts on porous titanium scaffolds[J]. Biomaterials, 2005, 26: 7319
[89]
Jiang S W, Qi M.Development of porous metals used as biomaterials[J]. Mater. Sci. Eng., 2002, 20: 597(姜淑文, 齐民. 生物医用多孔金属材料的研究进展[J]. 材料科学与工程, 2002, 20: 597)
[90]
Levine B R, Sporer S, Poggie R A, et al.Experimental and clinical performance of porous tantalum in orthopedic surgery[J]. Biomaterials, 2006, 27: 4671
[91]
Geng L X, Gan H Q, Wang Q, et al.Effect of domestic porous tantalum on biocompatibility and osteogenic gene expression in rat osteoblasts[J]. J. Third. Mil. Med. Univ., 2014, 36: 1163(耿丽鑫, 甘洪全, 王茜等. 国产多孔钽对成骨细胞生物相容性及其相关成骨基因表达的影响[J]. 第三军医大学学报, 2014, 36: 1163)
[92]
Wang C H, Yang C D, Liu M, et al.Martensitic microstructures and mechanical properties of as-quenched metastable β-type Ti-Mo alloys[J]. J. Mater. Sci., 2016, 51: 6886
[93]
Hao Y L, Yang R, Li S J, et al.Ageing response of Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr for biomedical applications[J]. Acta Metall. Sin., 2002, 38(suppl.): 126(郝玉琳, 杨锐, 李述军等. 时效处理对Ti-29Nb-13Ta-4.6Zr医用钛合金Young's模量和力学性能的影响[J]. 金属学报, 2002, 38(增刊): 126)
[94]
Miura K, Yamada N, Hanada S, et al.The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young's modulus[J]. Acta Biomater., 2011, 7: 2320
[95]
Ohmori Y, Ogo T, Nakai K, et al.Effects of ω-phase precipitation on β→α, α′′ transformations in a metastable β titanium alloy[J]. Mater. Sci. Eng., 2001, A312: 182
[96]
Mantani Y, Takemoto Y, Hida M, et al.Phase transformation of α″ martensite structure by aging in Ti-8 mass % Mo alloy[J]. Mater. Trans., 2004, 45: 1629
[97]
Hanada S, Izumi O.Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys[J]. Metall. Trans., 1986, 17A: 1409
[98]
Zhao X F, Niinomi M, Nakai M, et al.Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications[J]. Acta Biomater., 2012, 8: 1990
[99]
Nakai M, Niinomi M, Zhao X L, et al. Young's modulus changeable titanium alloys for orthopaedic applications [J]. Mater. Sci. Forum, 2012, 706-709: 557
[100]
Nakai M, Niinomi M, Zhao X F, et al.Self-adjustment of Young's modulus in biomedical titanium alloys during orthopaedic operation[J]. Mater. Lett., 2011, 65: 688
[101]
Niinomi M, Liu Y, Nakai M, et al.Biomedical titanium alloys with Young's moduli close to that of cortical bone[J]. Regen. Biomater., 2016, 3:173
[102]
Ma X Q, Han Y, Yu Z T, et al.Phase transformation and mechanical properties of TLM titanium alloy for orthopaedic implant application[J]. Rare Met. Mater. Eng., 2012, 41: 1535(麻西群, 憨勇, 于振涛等. 骨科植入用TLM钛合金的相转变与力学性能[J]. 稀有金属材料与工程, 2012, 41: 1535)
[103]
Ma X Q, Yu Z T, Niu J L, et al.Microstructure and mechanical properties of Ti-3Zr-Mo-15Nb medical titanium alloys[J]. Rare Met. Mater. Eng., 2010, 39: 1956(麻西群, 于振涛, 牛金龙等. Ti-3Zr-Mo-15Nb医用钛合金的显微组织及力学性能[J]. 稀有金属材料与工程, 2010, 39: 1956)
[104]
Beder O E, Stevenson J K, Jones T W.A further investigation of the surgical application of titanium metal in dogs[J]. Surgery, 1957, 41: 1012
[105]
Pye A D, Lockhart D E A, Dawson M P, et al. A review of dental implants and infection[J]. J. Hosp. Infect., 2009, 72: 104
[106]
Mow V C, Huiskes R, translated by Tang T T, Pei G X, Li X, et al. Basic Orthopaedic Biomechanics and Mechano-Biology [M]. 3rd Ed., Jinan: Shandong Science and Technology Press, 2009: 13(Mow V C, Huiskes R著, 汤亭亭, 裴国献, 李旭等译. 骨科生物力学暨力学生物学 [M]. 第3版. 济南: 山东科学技术出版社, 2009: 13)
[107]
Yu Z T, Zhang M H, Yu S, et al.Analysis of R&D, production and application of biomedical Ti alloys materials applied in medical devices of China[J]. China Med. Device Inform., 2012, 18(7): 1(于振涛, 张明华, 余森等. 中国医疗器械用钛合金材料研发、生产与应用现状分析[J]. 中国医疗器械信息, 2012, 18(7): 1)
[108]
Yu Z T, Yu S, Zhang M H, et al.Design, development and application of novel biomedical Ti alloy materials applied in surgical implants[J]. Mater. China, 2010, 29(12): 35(于振涛, 余森, 张明华等. 外科植入物用新型医用钛合金材料设计、开发与应用现状及进展[J]. 中国材料进展, 2010, 29(12): 35)
[109]
Hao Y L, Yang R.Biomedical titanium alloy with ultralow elastic modulus and high strength[J]. Mater. Sci. Forum, 2010, 654: 2130
[110]
Yu Z T, Ma X Q, Yu S, et al.Micro-nano technology and latest progress of biomedical titanium alloy[J]. Chin. J. Nonferrous Met., 2010, 20(suppl. 1): 1008(于振涛, 麻西群, 余森等. 生物医用钛合金的微纳化加工技术及最新进展[J]. 中国有色金属学报, 2010, 20(增刊1): 1008)
[111]
Yu Z T, Han J Y, Ma X Q, et al.Biological and mechanical compatibility of biomedical titanium alloy materials[J]. Chin. J. Tissue Eng. Res., 2013, 17: 4707(于振涛, 韩建业, 麻西群等. 生物医用钛合金材料的生物及力学相容性[J]. 中国组织工程研究, 2013, 17: 4707)
[112]
Xi T F.Evaluation of biology based on medical devices[J]. China Med. Device Inform., 1999, 5(3): 4(奚廷斐. 医疗器械生物学评价[J]. 中国医疗器械信息, 1999, 5(3): 4)
[113]
Okazaki Y, Ito Y, Kyo K, et al.Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al[J]. Mater. Sci. Eng., 1996, A213: 138
[114]
Okazaki Y, Gotoh E.Comparison of metal release from various metallic biomaterials in vitro[J]. Biomaterials, 2005, 26: 11
[115]
Sumner D R, Galante J O.Determinants of stress shielding: Design versus materials versus interface[J]. Clin. Orthop. Relat. Res., 1992, 274: 202
[116]
Li Y H, Yang C, Zhao H D, et al.New developments of Ti-based alloys for biomedical applications[J]. Materials, 2014, 7: 1709
[117]
Matsuno H, Yokoyama A, Watari F, et al.Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium[J]. Biomaterials, 2001, 22: 1253
[118]
Cremasco A, Messias A D, Esposito A R, et al.Effects of alloying elements on the cytotoxic response of titanium alloys[J]. Mater. Sci. Eng., 2011, C31: 833
[119]
Elias C N, Lima J H C, Valiev R, et al. Biomedical applications of titanium and its alloys[J]. JOM, 2008, 60: 46
[120]
Kirmanidou Y, Sidira M, Drosou M E, et al.New Ti-alloys and surface modifications to improve the mechanical properties and the biological response to orthopedic and dental implants: A review[J]. BioMed Res. Int., 2016, 2016: 2908570
[121]
Dohan Ehrenfest D M, Coelho P G, Kang B S, et al. Classification of osseointegrated implant surfaces: Materials, chemistry and topography[J]. Trends Biotechnol., 2010, 28: 198
[122]
Richert L, Vetrone F, Yi J H, et al.Surface nanopatterning to control cell growth[J]. Adv. Mater., 2008, 20: 1488
[123]
Zhang C B, Chen F L, Zhang R, et al.Experimental research on the osteoblasts function on Ti-75 alloy[J]. J. Pract. Stomatol., 2000, 16: 24(张春宝, 陈富林, 张蓉等. Ti-75合金对人成骨细胞的生长、增殖和功能分化的影响[J]. 实用口腔医学杂志, 2000, 16: 24)
[124]
Hernandez-Rodriguez M A L, Contreras-Hernandez G R, Juarez-Hernandez A, et al. Failure analysis in a dental implant[J]. Eng. Fail. Anal., 2015, 57: 236
[125]
Zhao F, Han Y F, Hu J F.Three-dimensional finite element method analysis of relation of implant elastic modulus and initial stress and bone-implant surface stress distribution[J]. Chin. J. Oral Implantol., 2006, 11(2): 55(赵峰, 韩彦峰, 胡江峰. 弹性模量和初始应力对种植体骨界面应力分布影响的三维有限元分析[J]. 中国口腔种植学杂志, 2006, 11(2): 55)
[126]
Su Y C.Contemporary Oral Implantology [M]. Beijing: People's Medical Publishing House, 2004: 91(宿玉成. 现代口腔种植学 [M]. 北京: 人民卫生出版社, 2004: 91)
[127]
Wang Q T, Zhang Y M, Hu N S, et al.Microstructure analysis of fractured Ti alloy implant[J]. Rare Met. Mater. Eng., 2004, 33: 442(王勤涛, 张玉梅, 胡奈赛等. 钛合金种植体临床断裂的原因分析[J]. 稀有金属材料与工程, 2004, 33: 442)
[128]
Shemtov-Yona K, Rittel D.Identification of failure mechanisms in retrieved fractured dental implants[J]. Eng. Fail. Anal., 2014, 38: 58
[129]
Kuramoto S, Furuta T, Hwang J H, et al.Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy[J]. Metall. Mater. Trans., 2006, 37A: 657
[130]
Yu Z T, Zhou L, Luo L J, et al. Investigation on mechanical compatibility matching for biomedical titanium alloys [J]. Key Eng. Mater., 2005, 288-289: 595
[131]
Abdel-Hady G M, Niinomi M. Biocompatibility of Ti-alloys for long-term implantation[J]. J. Mech. Behav. Biomed. Mater., 2013, 20: 407
[132]
Shibata Y, Tanimoto Y, Maruyama N, et al.A review of improved fixation methods for dental implants. Part II: Biomechanical integrity at bone-implant interface[J]. J. Prosthodont. Res., 2015, 59: 84
[133]
DeTolla D H, Andreana S, Patra A, et al. Role of the finite element model in dental implants[J]. J. Oral Implantol., 2000, 26: 77
[134]
Yu Z, Lian Z.Influence of martensitic transformation on mechanical compatibility of biomedical β type titanium alloy TLM[J]. Mater. Sci. Eng., 2006, A438: 391
[135]
Bai X, Zhao Y, Zeng W, et al.Deformation mechanism and microstructure evolution of TLM titanium alloy during cold and hot compression[J]. Rare Met. Mater. Eng., 2015, 44: 1827)
[136]
Suchanek K, Bartkowiak A, Gdowik A, et al.Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates[J]. Mater. Sci. Eng., 2015, C51: 57
[137]
Liu J, Wang X D, Jin Q M, et al.The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings[J]. Biomaterials, 2012, 33: 5036
[138]
Xue B J, Guo L T, Chen X Y, et al.Electrophoretic deposition and laser cladding of bioglass coating on Ti[J]. J. Alloys Compd., 2017, 710: 663
[139]
Wen F, Huang N, Sun H, et al.The study of composition, structure, mechanical properties and platelet adhesion of Ti-O/TiN gradient films prepared by metal plasma immersion ion implantation and deposition[J]. Nucl. Instrum. Methods Phys. Res. Sect., 2004, 222B: 81
[140]
Hwang I J, Choe H C, Brantley W A.Electrochemical characteristics of Ti-6Al-4V after plasma electrolytic oxidation in solutions containing Ca, P, and Zn ions[J]. Surf. Coat. Technol., 2017, 320: 458
[141]
Zhou M, Xiong P, Jia Z J, et al.Improved the in vitro cell compatibility and apatite formation of porous Ti6Al4V alloy with magnesium by plasma immersion ion implantation[J]. Mater. Lett., 2017, 202: 9
[142]
Schmehl J M, Harder C, Wendel H P, et al.Silicon carbide coating of nitinol stents to increase antithrombogenic properties and reduce nickel release[J]. Cardiovasc. Revasc. Med., 2008, 9: 255
[143]
Huang C L, Zhao C L, Han P, et al.Histological and biomechanical evaluation in the interface between nano-surface titanium alloy implants and bone[J]. Chin. J. Tissue Eng. Res., 2011, 15: 3867(黄成龙, 赵常利, 韩培等. 纳米化表面钛合金内植物的界面组织学和生物力学评价[J]. 中国组织工程研究与临床康复, 2011, 15: 3867)
[144]
Gu X F, Jiang Y, Han P, et al.Effect of the nano-surface of titanium alloy on the adhesion of osteoblasts[J]. Chin. J. Clin. Rehab., 2006, 10(25): 46(顾新丰, 蒋垚, 韩培等. 钛合金表面纳米化对成骨细胞黏附的影响[J]. 中国临床康复, 2006, 10(25): 46)
[145]
Hélary G, Noirclère F, Mayingi J, et al.A new approach to graft bioactive polymer on titanium implants: Improvement of MG 63 cell differentiation onto this coating[J]. Acta Biomater., 2009, 5: 124
[146]
Hoshikawa Y, Onoki T, Akao M, et al.Blood compatibility and tissue responsiveness on simple and durable methylsiloxane coating[J]. Mater. Sci. Eng., 2012, C32: 1627
[147]
Pegg E C, Walker G S, Scotchford C A, et al.Mono-functional aminosilanes as primers for peptide functionalization[J]. J. Biomed. Mater. Res., 2009, 90A: 947
[148]
Zhang F, Zhang Z B, Zhu X L, et al.Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion[J]. Biomaterials, 2008, 29: 4751
[149]
Neoh K G, Hu X F, Zheng D, et al.Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012, 33: 2813
[150]
Rychly J, Nebe B J.Cell-material interaction[J]. BioNanoMaterials, 2013, 14: 153
[151]
Huang R, Lu S M, Han Y.Role of grain size in the regulation of osteoblast response to Ti-25Nb-3Mo-3Zr-2Sn alloy[J]. Colloids Surf., 2013, 111B: 232
[152]
Hanawa T.Biofunctionalization of titanium for dental implant[J]. Jpn. Dent. Sci. Rev., 2010, 46: 93
[153]
Foss B L, Ghimire N, Tang R G, et al.Bacteria and osteoblast adhesion to chitosan immobilized titanium surface: A race for the surface[J]. Colloids Surf., 2015, 134B: 370
[154]
Pessková V, Kubies D, Hulejová H, et al.The influence of implant surface properties on cell adhesion and proliferation[J]. J. Mater. Sci. Mater. Med., 2007, 18: 465
[155]
Mager M D, LaPointe V, Stevens M M. Exploring and exploiting chemistry at the cell surface[J]. Nat. Chem., 2011, 3: 582
[156]
Benoit D S W, Schwartz M P, Durney A R, et al. Small functional groups for controlled differentiation of hydrogel-encapsulated human mesenchymal stem cells[J]. Nat. Mater., 2008, 7: 816
[157]
Slater J, Boyce P, Jancaitis M, et al.Modulation of endothelial cell migration via manipulation of adhesion site growth using nanopatterned surfaces[J]. ACS Appl. Mater. Interfaces, 2015, 7: 4390
[158]
Paital S R, Dahotre N B.Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies[J]. Mater. Sci. Eng., 2009, R66: 1
[159]
Sen Y U, Zhen-Tao Y U, Han J Y, et al. Haemocompatibility of Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy with surface heparinization using electrostatic self assembly technology[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 3046
[160]
Koudelka P, Doktor T, Kytyr D, et al.Micromechanical properties of biocompatible materials for bone tissue engineering produced by direct 3D printing[J]. Key Eng. Mater., 2015, 662: 138
[161]
Jakus A E, Rutz A L, Shah R N.Advancing the field of 3D biomaterial printing[J]. Biomed. Mater., 2016, 11: 014102
[162]
Hughes G, ?chsner A.Design, manufacture and testing of three-dimensional scaffolds[J]. Adv. Struct. Mater., 2015, 71: 133
[163]
Roach P, Eglin D, Rohde K, et al.Modern biomaterials: A review-bulk properties and implications of surface modifications[J]. J. Mater. Sci. Mater. Med., 2007, 18: 1263
[164]
Yu J, Lin X, Ma L, et al.Influence of laser deposition patterns on part distortion, interior quality and mechanical properties by laser solid forming (LSF)[J]. Mater. Sci. Eng., 2011, A528:1094
[165]
Fukuda A, Takemoto M, Saito T, et al.Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting[J]. Acta Biomater., 2011, 7: 2327
[166]
Heinl P, Müller L, K?rner C, et al.Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta Biomater., 2008, 4: 1536
[167]
Traini T, Mangano C, Sammons R L, et al.Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants[J]. Dent. Mater., 2008, 24: 1525
[168]
Murr L E, Quinones S A, Gaytan S M, et al.Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications[J]. J. Mech. Behav. Biomed. Mater., 2009, 2: 20
[169]
Parthasarathy J.A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications[J]. J. Manuf. Process., 2011, 13:160
[170]
Xiang L, Wang C, Zhang W, et al.Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process[J]. Mater. Lett., 2009, 63: 403
[171]
Horn T J, Harrysson O L A, Marcellin-Little D J, et al. Flexural properties of Ti6Al4V rhombic dodecahedron open cellular structures fabricated with electron beam melting [J]. Addit. Manuf., 2014, 1-4: 2
[172]
Rafi H K, Karthik N V, Gong H, et al.Microstructures and mechanical properties of Ti6Al4V parts fabricated by selective laser melting and electron beam melting[J]. J. Mater. Eng. Perform., 2013, 22: 3872
[173]
Li F, Wang Z, Zeng X.Microstructures and mechanical properties of Ti6Al4V alloy fabricated by multi-laser beam selective laser melting[J]. Mater. Lett., 2017, 199: 79
[174]
Leuders S, Th?ne M, Riemer A, et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. Int. J. Fatigue, 2013, 48: 300
[175]
Yang J, Wang J, Yuan T, et al.The enhanced effect of surface microstructured porous titanium on adhesion and osteoblastic differentiation of mesenchymal stem cells[J]. J. Mater. Sci. Mater. Med., 2013, 24: 2235
[176]
Anselme K, Bigerelle M, Noel B, et al.Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses[J]. J. Biomed. Mater. Res., 2000, 49A: 155
[177]
Tan X P, Tan Y J, Csl C, et al.Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility[J]. Mater. Sci. Eng., 2017, C76: 1328
[178]
Ru Z F, Li Y, Luo K, et al.Progress in low elastic modulus titanium alloy[J]. Mater. Rev., 2011, 25(spec. issue): 250(茹志芳, 李岩, 罗坤等. 低弹性模量钛合金的研究进展[J]. 材料导报, 2011, 25(特刊): 250)>
[179]
Bremus-Koebberling E A, Beckemper S, Koch B, et al. Nano structures via laser interference patterning for guided cell growth of neuronal cells[J]. J. Laser. Appl., 2012, 24: 042013
[180]
Munuera C, Matzelle T R, Kruse N, et al.Surface elastic properties of Ti alloys modified for medical implants: A force spectroscopy study[J]. Acta Biomater., 2007, 3: 113
[181]
Mendon?a G, Mendon?a D B S, Sim?es L G P, et al. The effects of implant surface nanoscale features on osteoblast-specific gene expression[J]. Biomaterials, 2009, 30: 4053