Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (4): 485-493    DOI: 10.11900/0412.1961.2017.00151
Orginal Article Current Issue | Archive | Adv Search |
Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101
Yusen SU, Yinhui YANG(), Jianchun CAO, Yuliang BAI
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101. Acta Metall Sin, 2018, 54(4): 485-493.

Download:  HTML  PDF(7433KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermal deformation difference of two phases for duplex stainless steel (DSS) makes hot working difficult, 2101 DSS substitute Mn, N for Ni to stabilize austenite phase, which will significantly affect hot deformation behavior. Hot compression tests in the temperature ranging from 1123 to 1423 K and strain rate ranging from 0.001 to 10 s-1 were carried out on a Gleeble-3800 thermal simulator for 2101 DSS. At the same strain rate, the flow curve characteristics of 2101 DSS changed from dynamic recrystallization (DRX) to dynamic recovery with increasing deformation temperature. Increasing deformation stain rate from 0.001 s-1 to 0.01 and 0.1 s-1 increased DRX temperature range, but higher strain rate of 1 and 10 s-1 is not beneficial to DRX occurrence. In the deformation temperature region of 1253~1323 K and low strain rate of 0.001~0.1 s-1, the smaller strain value corresponding to the peak stress, the austenite DRX is more likely to occur, which is beneficial to the equiaxed recrystallized grains formation. At low strain rate, the recrystallization grain grows up with the increase of deformation temperature, the worse effect of austenite DRX is related to weakened austenite stabilized ability of Mn substitution for Ni at high Zener-Hollomon parameter values. Based on the thermal deformation equation, the apparent activation energy Q was calculated as 464.49 kJ/mol, which is slightly higher than that of 2205 DSS, and the constitutive equation of the peak flow stress was established. By combining with flow curve and microstructure analysis, the processing map exhibits the optimum processing conditions are in deformation temperature ranging from 1220 to 1350 K and strain rate ranging from 0.001 to 0.1 s-1 with high power dissipation coefficient of 0.40~0.47, under which the austenite DRX obviously occurred.

Key words:  2101 duplex stainless steel      hot deformation      dynamic recrystallization      constitutive equation      hot working drawing     
Received:  25 April 2017     
ZTFLH:  TG142  
Fund: Supported by National Natural Science Foundation of China (No.51461024)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00151     OR     https://www.ams.org.cn/EN/Y2018/V54/I4/485

Fig.1  True stress-true strain curves of 2101 duplex stainless steel under different strain rates ($\dot{\varepsilon}$) and temperatures (a) $\dot{\varepsilon}$=0.001 s-1 (b) $\dot{\varepsilon}$=0.01 s-1 (c) $\dot{\varepsilon}$=0.1 s-1 (d) $\dot{\varepsilon}$=1 s-1 (e) $\dot{\varepsilon}$=10 s-1
Fig.2  Typical OM images of 2101 duplex stainless steel under different temperatures (T) and different $\dot{\varepsilon}$

(a) forging slab after solution treatment (b) T=1173 K, $\dot{\varepsilon}$=0.001 s-1(c) T=1253 K, $\dot{\varepsilon}$=0.001 s-1 (d) T=1173 K, $\dot{\varepsilon}$=0.01 s-1 (e) T=1253 K, $\dot{\varepsilon}$=0.01 s-1(f) T=1173 K, $\dot{\varepsilon}$=0.1 s-1 (g) T=1253 K, $\dot{\varepsilon}$=0.1 s-1 (h) T=1123 K, $\dot{\varepsilon}$=1 s-1(i) T=1253 K, $\dot{\varepsilon}$=1 s-1 (j) T=1123 K, $\dot{\varepsilon}$=10 s-1

Fig.3  Relationships between strain rate (a), deformation temperature (b) and peak stress (σp) of 2101 duplex stainless steel (α—stress level parameter)
Fig.4  Relationship between lnZ and ln[sinh(ασ)] (Z—Zener-hollomom parameter, σ—the stress value corresponding to the individual variables)
Fig.5  Processing maps in different true strain (ε) of 2101 duplex stainless steel (The shadow regions represent the rheological instability zones. The contours represent power dissipation coefficients) (a) ε=0.3 (b) ε=0.4 (c) ε=0.5 (d) ε=0.6
ε Parameter range of the optimal machining area Power dissipation Microstructural
T / K ε˙/ s-1 coefficient image
0.3 1123~1210 0.008~0.019 0.40~0.47 Fig.2d
0.4 1220~1255 0.001~0.003 0.40~0.45 Figs.2c and e
1305~1340 0.0013~0.05
0.5 1270~1310 0.001~0.0025 0.40~0.45 Fig.2e
1315~1350 0.0033~0.067
0.6 1155~1200 0.001~0.003 0.406~0.47 Figs.2b and g
1220~1280 0.01~0.1
Table 1  The optimal processing parameters of each true strain range and the corresponding power dissipation factor and microstructure
[1] Charles J, Chemelle P.The history of duplex developments, nowadays DSS properties andduplex market future trends[J]. World Iron Steel, 2012, 144: 477
[2] Feng H, Zhou X Y, Liu H, et al.Development and trend of hyper duplex stainless steels[J]. J. Iron. Steel. Res., 2015, 27(4): 1(丰涵, 周晓玉, 刘虎等. 特超级双相不锈钢的发展现状及趋势[J]. 钢铁研究学报, 2015, 27(4): 1)
[3] Gao W, Luo J M, Yang J J.Research progress and application of double phase stainless steel[J]. Ordnance. Mater. Sci. Eng., 2005, 28(3): 61(高娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用[J]. 兵器材料科学与工程, 2005, 28(3): 61)
[4] Du C F, Zhan F, Yang Y H, et al.Research progress in nickel-saving duplex stainless steel[J]. Met. Funct. Mater., 2010, 17(5): 63(杜春风, 詹凤, 杨银辉等. 节镍型双相不锈钢的研究进展[J]. 金属功能材料, 2010, 17(5): 63)
[5] Nilsson J O, Kangas P, Wilson A, et al.Mechanical properties, microstructural stability and kinetics of σ-phase formation in 29Cr-6Ni-2Mo-0.38N superduplex stainless steel[J]. Metall. Mater. Trans., 2000, 31A: 35
[6] Han D, Jiang Y M, Deng B, et al.Effect of aging time on electrochemical corrosion behavior of 2101 duplex stainless steel[J]. Acta Metall. Sin., 2009, 45: 919(韩冬, 蒋益明, 邓博等. 时效时间对2101双相不锈钢电化学腐蚀行为的影响[J]. 金属学报, 2009, 45: 919)
[7] He Y, Zhang C L, Wang J, et al.Effects of aging temperature on intergranular corrosion behavior of S32101 lean duplex stainless steel[J]. Corros. Sci. Prot. Technol., 2016, 28: 241(何燕, 张彩丽, 王剑等. 时效温度对节镍双相不锈钢S32101晶间腐蚀行为影响的研究[J]. 腐蚀科学与防护技术, 2016, 28: 241)
[8] Shi F, Wang L J, Cui W F, et al.Precipitation behavior of M2N in a high-nitrogen austenitic stainless steel during isothermal aging[J]. Acta Metall. Sin.(Engl. Lett.), 2007, 20: 95
[9] Fang Y L, Liu Z Y, Wang G D.Effect of isothermal aging on precipitation behavior of lean duplex stainless steel 2101[J]. J. Iron. Steel. Res., 2010, 22(6): 21(方轶琉, 刘振宇, 王国栋. 等温时效对节约型双相不锈钢2101析出行为的影响[J]. 钢铁研究学报, 2010, 22(6): 21)
[10] Lin H X, Fan Y G, Zhou S P.Study on uniform corrosion resistance of 22Cr duplex stainless steel[J]. Corros. Protect. Petrochem. Ind., 2008, 25(6): 10(林红先, 樊玉光, 周三平. 22Cr双相不锈钢耐均匀腐蚀性能的研究[J]. 石油化工腐蚀与防护, 2008, 25(6): 10)
[11] Yang Y H, Yan B.Effect of high temperature compression deformation strain rate on the microstructure and corrosion behavior of 2205 duplex stainless steel[J]. Anti-Corros. Methods Mater., 2015, 62: 163
[12] Zhao K W.Study on hot deformation behavior of 00Cr22Ni5Mo-3N duplex stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2010(赵科巍. 2205双相不锈钢的高温变形过程及其机理研究 [D]. 兰州: 兰州理工大学, 2010)
[13] Wang Y X, Liu Z Y, Wang G D, et al.Laboratory study on hot deformation behavior of 2205 duplex stainless steel[J]. J. Plast. Eng., 2012, 19(4): 89(王月香, 刘振宇, 王国栋等. 双相不锈钢2205热变形行为的实验[J]. 塑性工程学报, 2012, 19(4): 89)
[14] Wang J F, Wang Y X, Hua F A, et al.Static softening behavior and microstructures analysis of duplex stainless steel after hot deformation[J]. J. Iron. Steel. Res., 2011, 23(9): 46(王佳夫, 王月香, 花福安等. 双相不锈钢热变形后的静态软化行为及组织分析[J]. 钢铁研究学报, 2011, 23(9): 46)
[15] Liu Y Y.Study on microstruture and property evolution of LDX2101 during thermal deformation [D]. Hangzhou: Zhejiang University, 2013(刘彦妍. 2101双相不锈钢热变形过程微观组织与性能演变的研究 [D]. 杭州: 浙江大学, 2013)
[16] Fang Y L, Liu Z Y, Zhang W N, et al.Microstructure evolution of lean duplex stainless steel 2101 during hot deformation[J]. Acta Metall. Sin., 2010, 46: 641(方轶琉, 刘振宇, 张维娜等. 节约型双相不锈钢2101高温变形过程中微观组织演化[J]. 金属学报, 2010, 46: 641)
[17] Du S W, Chen S M.Hot deformation behavior and processing maps of LZ50 steel[J]. Trans. Mater. Heat. Treat., 2016, 37: 223(杜诗文, 陈双梅. LZ50钢的热变形行为及热加工图[J]. 材料热处理学报, 2016, 37: 223)
[18] Sellars C M, Mctegart W J.On the mechanism of hot deformation[J]. Acta Metall., 1966, 14: 1136
[19] Wu K.Study on hot deformation behavior and mechanism of economical duplex stainless steel 2101 [D]. Xi'an: Xi'an University of Architecture and Technology, 2013(吴琨. 经济型双相不锈钢2101高温变形行为及机理研究 [D]. 西安: 西安建筑科技大学, 2013)
[20] Duprez L, Cooman B C D, Akdut N. Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation[J]. Metall. Mater. Trans., 2002, 33A: 1931
[21] Chen L, Wang L M, Du X J, et al.Hot deformation behavior of 2205 duplex stainless steel[J]. Acta Metall. Sin., 2010, 46: 52(陈雷, 王龙妹, 杜晓建等. 2205双相不锈钢的高温变形行为[J]. 金属学报, 2010, 46: 52)
[22] Cabrera J M, Mateo A, Llanes L, et al. Hot deformation of duplex stainless steels [J]. J. Mater. Process. Technol., 2003, 143-144: 321
[23] Farnoush H, Momeni A, Dehghani K, et al.Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases[J]. Mater. Des., 2010, 31: 220
[24] Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metall. Mater. Trans., 1984, 15A: 1883
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[5] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[6] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[7] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[8] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[9] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[10] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[11] LIU Chao, YAO Zhihao, JIANG He, DONG Jianxin. The Feasibility and Process Control of Uniform Equiaxed Grains by Hot Deformation in GH4720Li Alloy with Millimeter-Level Coarse Grains[J]. 金属学报, 2021, 57(10): 1309-1319.
[12] ZHOU Li, LI Ming, WANG Quanzhao, CUI Chao, XIAO Bolv, MA Zongyi. Study of the Hot Deformation and Processing Map of 31%B4Cp/6061Al Composites[J]. 金属学报, 2020, 56(8): 1155-1164.
[13] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[14] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[15] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
No Suggested Reading articles found!