Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (10): 1231-1242    DOI: 10.11900/0412.1961.2019.00049
Current Issue | Archive | Adv Search |
Research Progress in Age-Hardenable Mg-Sn Based Alloys
SHI Zhangzhi1,2(),ZHANG Min3,HUANG Xuefei4,LIU Xuefeng1,2,5,ZHANG Wenzheng6
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Beijing Laboratory of Metallic Materials and Processing for Modern Transportation, University of Science and Technology Beijing, Beijing 100083, China
3. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
4. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
5. Key Laboratory for Advanced Materials Processing of Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China
6. Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Download:  HTML  PDF(6682KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-Sn based alloy system is a typical age-hardenable Mg alloy system with Mg2Sn as the major precipitation phase. Eutectic temperature at Mg-rich end of Mg-Sn phase diagram is much higher than those of Mg-Al and Mg-Zn phase diagrams, which is comparable to that of Mg-RE phase diagram. So Mg-Sn based alloys are hopeful candidates of rare-earth free heat resistant Mg alloys with low cost. This paper systematically reviews research progress in age-hardenable Mg-Sn based alloys. The main second phase β-Mg2Sn has a fcc structure with different lattice parameters reported, one of which the most frequently adopted is aβ≈0.676 nm, agreeing well with calculations of interfacial orientations. Twelve orientation relationships (ORs) between Mg2Sn precipitates and Mg matrix have been identified. Those with similar morphologies, i.e., the same long axis direction or the same habit plane, are possibly related to different ORs. Addition of Zn benefits the appearance of β-Mg2Sn precipitates inclined to the Mg basal plane, which are more effective to hinder dislocation movement on the basal plane and result in a greater strengthening effect. Effects of various alloying elements on age-hardening response and mechanical properties of Mg-Sn binary alloys have been summarized. Elements such as Zn, Al, Ag and Na can enhance age-hardening responses. Due to formation of highly thermal stable compounds with Sn, RE, Ca, Sr and Li exhibit negative effects. Consequently, alloy design of Mg-Sn based alloys faces more difficulties, requiring an in-depth investigation of phase transformation processes. Finally, future research directions have been specified.

Key words:  Mg alloy      age-hardenable      alloy design      solid-state phase transformation     
Received:  25 February 2019     
ZTFLH:  TG146.22  
Fund: Foundation:National Natural Science Foundation of China(51601010)
Corresponding Authors:  Zhangzhi SHI     E-mail:  ryansterne@163.com

Cite this article: 

SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys. Acta Metall Sin, 2019, 55(10): 1231-1242.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00049     OR     https://www.ams.org.cn/EN/Y2019/V55/I10/1231

Fig.1  Schematics of crystal structure of Mg2Sn
No.ORMorphology
1{110}β//(0001)α, <001>β//<112ˉ0>α,Basal lath, long axis //<112ˉ0>α[24]
<11ˉ0>β//<1ˉ100>α
2{110}β//{0001}α, <11ˉ1>β//<112ˉ0>α,Basal lath, long axis about 3.0°[18] or
<11ˉ2ˉ>β//<1ˉ100>α10.2°[25] away from <1ˉ100>α
3{111}β//{0001}α, <11ˉ0>β//<112ˉ0>α,(I) Basal faceted plate, side facets //{112ˉ}β//{1ˉ100}α;
<112ˉ>β//<1ˉ100>α(II) Faceted particle, F1//{111}β//(0001)α,
F2//{113ˉ}β, F3//{115}β[23]; (III) Basal lath[26]
4{111}β//{0001}α, <112ˉ>β//<112ˉ0>α,(I) Basal lath; (II) Faceted particle[24]
<1ˉ10>β//<1ˉ100>α
5{111}β//{0001}α,Basal faceted plate, side facets //
<11ˉ0>β about -9.2° from <2ˉ110>α{7.05, 7.45ˉ, 0.40}β//{3.16ˉ, 2.16, 1, 0}α[27]
6{110}β//{0001}α, <11ˉ0>β//<112ˉ0>α,Basal lath, long axis //<112ˉ0>α[28]
<001>β//<11ˉ00>α
7{110}β//{0001}α, <1ˉ12>β//<112ˉ0>α,

Basal lath, long axis //<112ˉ0>α[28]

<1ˉ11ˉ>β//<11ˉ00>α
8<011>β//<011ˉ0>α,Inclined lath, when OR angle is 0.39°,
{011ˉ}β about 0.36°~1.20°F1 (i.e., HP) //{011}β//{011ˉ0}α,
from {0001}α OR angle ofF2//{1, 9.1, 9.1ˉ}β//{2, 1ˉ, 1ˉ, 38.3ˉ}α
0.39° appears most frequently(Major side facet, 4.7° from the basal plane)[29]
9<011>β//<011ˉ0>α,Inclined lath, long axis about 39° from the basal plane,
{100}β about -15.6° from {0001}αF1//{111ˉ}β//{21ˉ1ˉ4}α,
RM: g{111ˉ}β//g{21ˉ1ˉ4}α,F2//{31ˉ1}β//{2ˉ114}α, F3//{100}β//{2ˉ, 1, 1, 12}α,
<011>β//<011ˉ0>αF4//{13ˉ3}β//{30ˉ, 15, 15, 2ˉ}α[17]
10<01ˉ1ˉ>β//<011ˉ0>α,Inclined lath, long axis about 39° from the basal plane,
{100}β about 4.0° from {2ˉ110}αF1//{1ˉ1ˉ1}β//{21ˉ1ˉ4}α,
RM, twin OR with respect to OR9F2//{11ˉ1}β//{2ˉ115}α, F3//{100}β//{18ˉ, 9, 9, 2}α[17]
11<011>β//<21ˉ1ˉ0>α,Inclined lath, long axis 79.6° from the basal plane,
{11ˉ1}β about -15.4° from {0001}αF1//{533ˉ}β//{03ˉ31}α,
RM: g{533ˉ}β//g{03ˉ31}αF2//{011ˉ}β//{02ˉ23ˉ}α[14,16]
<011>β//<21ˉ1ˉ0>α
12<011>β//<21ˉ1ˉ0>α,Inclined faceted plate, F1//{511ˉ}β//{011ˉ4}α,
{111ˉ}β about 13.7° from {0001}αwhich is 26.0° from the basal plane,
RM: g{511ˉ}β//g{011ˉ4}αF2 and F3 are 46.8° and 75.3° from the basal plane,
<011>β//<21ˉ1ˉ0>αrespectively[14,16]
Table 1  Orientation relationships (ORs) between β-Mg2Sn precipitates and α-Mg matrix, and morphologies of β-Mg2Sn precipitates (An anti-clockwise rotation of β-lattice with respect to α-lattice is positive, and vice versa. The habit plane (HP) of basal laths or plates is parallel to (0001)α, i.e., the basal plane of hcp Mg. RM refers to row matching, F denotes facet of precipitate, i.e., sharp flat interface between precipitate and matrix)[14,16,17,18,23,24,25,26,27,28,29]
Fig.2  An example of Δg parallelism and row matching in Mg/Mg2Sn solid-state phase transformation system
Fig.3  Explaining morphologies of different precipitates and their related ORs in Mg alloys through secondary coincidence site lattice (CCSL-II) model
Fig.4  OR11 type Mg2Sn precipitate with row matching either in reciprocal or in real spaces[16]
Fig.5  Effects of alloying elements on mechanical properties of Mg-Sn based alloys with data collected from Refs.[15,22,26,43,45~77] (T—Sn, A—Al, Z—Zn, Q—Ag, X—Ca, M—Mn, S—Si) (a) when ageing at 200 ℃, ageing peak time vs peak hardness
EffectMechanismAlloying element
Positive

Promote nucleation of Mg2Sn

Refine Mg2Sn

Promote inclined Mg2Sn morphology

Form precipitates other than Mg2Sn

Na, Zn, Ag, Hf, In+Li

Zn, Al, Cu

Zn

Zn, Ag, Al, Mn

NegativeDecrease volume fraction of Mg2SnRE, Ca, Sr, Li
NegligibleForm thermally stable Sn-free phase difficult to be soluted in Mg matrixSi, Sb
UncertainForm Sn-containing phase yet not sure whether can be soluted in Mg matrix or notBa, Sc
Table 2  Effects of alloying elements on age-hardening responses of Mg-Sn based alloys
[1] Hu H, Yu A, Li N Y ,et al. Potential magnesium alloys for high temperature die cast automotive applications: A review [J]. Mater. Manuf. Processes, 2003, 18: 687
[2] Witte F. The history of biodegradable magnesium implants: A review [J]. Acta Biomater., 2010, 6: 1680
[3] Joost W J, Krajewski P E. Towards magnesium alloys for high-volume automotive applications [J]. Scr. Mater., 2017, 128: 107
[4] Sezer N, Evis Z, Kayhan S M, et al. Review of magnesium-based biomaterials and their applications [J]. J. Magn. Alloys, 2018, 6: 23
[5] Xu W Q, Birbilis N, Sha G, et al. A high-specific-strength and corrosion-resistant magnesium alloy [J]. Nat. Mater., 2015, 14: 1229
[6] Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211
[7] Zhang J H, Liu S J, Wu R Z, et al. Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems [J]. J. Magn. Alloys, 2018, 6: 277
[8] Hono K, Mendis C L, Sasaki T T, et al. Towards the development of heat-treatable high-strength wrought Mg alloys [J]. Scr. Mater., 2010, 63: 710
[9] Jung I H, Zhu Z J, Kim J ,et al. Recent progress on the factsage thermodynamic database for new Mg alloy development [J]. JOM, 2017, 69: 1052
[10] Nayeb-Hashemi A A, Clark J B. The Mg-Sn (magnesium-tin) system [J]. Bull. Alloy Phase Diag., 1984, 5: 466
[11] Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
[12] Brauer G, Tiesler J. über dichte und gitterbau der verbindungen Mg2Pb, Mg2Sn und Mg2Ge [J]. Z.Anorg. Allg. Chem., 1950, 262: 319
[13] Villars P, Calvert L D. Pearson’s Handbook Desk Edition: Crystallographic Data for Intermetallic Phases [M]. Metals Park, OH: ASM International, 1997: 2347
[14] Liu C Q, Chen H W, Nie J F. Interphase boundary segregation of Zn in Mg-Sn-Zn alloys [J]. Scr. Mater., 2016, 123: 5
[15] Shi Z Z, Xu J Y, Yu J, et al. Microstructure and mechanical properties of as-cast and as-hot-rolled novel Mg-xSn-2.5Zn-2Al alloys (x=2, 4 wt%) [J]. Mater. Sci. Eng., 2018, A712: 65
[16] Shi Z Z, Sun Z P, Gu X F, et al. Row-matching in pyramidal Mg2Sn precipitates in Mg-Sn-Zn alloys [J]. J. Mater. Sci., 2017, 52: 7110
[17] Shi Z Z, Zhang W Z. Characterization and interpretation of twin related row-matching orientation relationships between Mg2Sn precipitates and the Mg matrix [J]. J. Appl. Cryst., 2015, 48: 1745
[18] Shi Z Z, Zhang W Z, Gu X F. Characterization and interpretation of the morphology of a Mg2Sn precipitate with irrational facets in a Mg-Sn-Mn alloy [J]. Philos. Mag., 2012, 92: 1071
[19] Nie X, Guan Y M, Zhao D S, et al. Transmission electron microscopy analysis of the crystallography of precipitates in Mg-Sn alloys aged at high temperatures [J]. J. Appl. Cryst., 2014, 47: 1729
[20] Makarov E S, Muntyanu S, Sokolov E B, et al. Study of the MgSn-Mg2Ge system [J]. Inorg. Mater., 1966, 2: 1830
[21] Bolshakov K A, Bulonkov N A, Rastorguev L N ,et al. The Mg3Sb2-Mg2Sn system [J]. Russ. J. Inorg. Chem., 1963, 8: 1421
[22] Sasaki T T, Oh-Ishi K, Ohkubo T ,et al. Effect of double aging and microalloying on the age hardening behavior of a Mg-Sn-Zn alloy [J]. Mater. Sci. Eng., 2011, A530: 1
[23] Zhang M, Zhang W Z, Zhu G Z. The morphology and crystallography of polygonal Mg2Sn precipitates in a Mg-Sn-Mn-Si alloy [J]. Scr. Mater., 2008, 59: 866
[24] Shi Z Z. Control on microstructure of Mg-Sn-based alloys and research on the precipitates crystallography in several Mg alloys [D]. Beijing: Tsinghua University, 2011
[24] (石章智. 镁锡基合金组织调控和几种镁合金中沉淀相晶体学的研究 [D]. 北京: 清华大学, 2011)
[25] Shi Z Z. The crystallography of lath-shaped Mg2Sn precipitates in a Mg-Sn-Zn-Mn alloy [J]. J. Alloys Compd., 2013, 559: 158
[26] Elsayed F R, Sasaki T T, Mendis C L, et al. Significant enhancement of the age-hardening response in Mg-10Sn-3Al-1Zn alloy by Na microalloying [J]. Scr. Mater., 2013, 68: 797
[27] Shi Z Z, Dai F Z, Zhang M ,et al. Secondary coincidence site lattice model for truncated triangular β-Mg2Sn precipitates in a Mg-Sn-based alloy [J]. Metall. Mater. Trans., 2013, 44A: 2478
[28] Shi Z Z, Dai F Z, Zhang W Z. Crystallography of Mg2Sn precipitates with two newly observed orientation relationships in an Mg-Sn-Mn alloy [J]. Mater. Sci. Technol., 2012, 28: 411
[29] Shi Z Z, Zhang W Z. Newly observed prismatic Mg2Sn laths in a Mg-Sn-Zn-Mn alloy [J]. J. Mater. Sci., 2013, 48: 7551
[30] Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J]. Scr. Mater., 2003, 48: 1009
[31] Sasaki T T, Oh-ishi K, Ohkubo T ,et al. Enhanced age hardening response by the addition of Zn in Mg-Sn alloys [J]. Scr. Mater., 2006, 55: 251
[32] Zhang W Z, Gu X F, Dai F Z. Faceted interfaces: A key feature to quantitative understanding of transformation morphology [J]. npj Comput. Mater., 2016, 2: 16021
[33] Zhang W Z, Weatherly G C. On the crystallography of precipitation [J]. Prog. Mater. Sci., 2005, 50: 181
[34] Shi Z Z, Zhang W Z. A transmission electron microscopy investigation of crystallography of τ-Mg32(Al, Zn)49 precipitates in a Mg-Zn-Al alloy [J]. Scr. Mater., 2011, 64: 201
[35] Shi Z Z, Zhang W Z. Prediction of the morphology of Mg32(Al, Zn)49 precipitates in a Mg-Zn-Al alloy [J]. Intermetallics, 2013, 39: 34
[36] Huang X F, Shi Z Z, Zhang W Z. Transmission electron microscopy investigation and interpretation of the morphology and interfacial structure of the ε'-Mg54Ag17 precipitates in an Mg-Sn-Mn-Ag-Zn alloy [J]. J. Appl. Cryst., 2014, 47: 1676
[37] Li Y J, Zhang W Z, Marthinsen K. Precipitation crystallography of plate-shaped Al6(Mn,Fe) dispersoids in AA5182 alloy [J]. Acta Mater., 2012, 60: 5963
[38] Radmilovic V, Kilaas R, Dahmen U ,et al. Structure and morphology of S-phase precipitates in aluminum [J]. Acta Mater., 1999, 47: 3987
[39] Tang Y R, Dai F Z, Gu X F, et al. Secondary dislocation structures in a Ni-TiN system from the GMS and O-lattice theory [J]. Physica, 2016, 77E: 97
[40] Shi Z Z, Yu J, Ji Z K ,et al. Influence of solution heat treatment on microstructure and hardness of as-cast biodegradable Zn-Mn alloys [J]. J. Mater. Sci., 2019, 54: 1728
[41] Zhang W Z, Sun Z P, Zhang J Y, et al. A near row matching approach to prediction of multiple precipitation crystallography of compound precipitates and its application to a Mg/Mg2Sn system [J]. J. Mater. Sci., 2017, 52: 4253
[42] Gu X F, Furuhara T, Zhang W Z. PTCLab: Free and open-source software for calculating phase transformation crystallography [J]. J. Appl. Cryst., 2016, 49: 1099
[43] Mendis C L, Bettles C J, Gibson M A ,et al. An enhanced age hardening response in Mg-Sn based alloys containing Zn [J]. Mater. Sci. Eng., 2006, A435-436: 163
[44] Mendis C L, Bettles C J, Gibson M A, et al. Refinement of precipitate distributions in an age-hardenable Mg-Sn alloy through microalloying [J]. Philos. Mag. Lett., 2006, 86: 443
[45] Behdad S, Zhou L, Henderson H B, et al. Improvement of aging kinetics and precipitate size refinement in Mg-Sn alloys by hafnium additions [J]. Mater. Sci. Eng., 2016, A651: 854
[46] Li W D, Huang X F, Huang W G. Effects of Ca, Ag addition on the microstructure and age-hardening behavior of a Mg-7Sn (wt%) alloy [J]. Mater. Sci. Eng., 2017, A692: 75
[47] Elsayed F R, Sasaki T T, Mendis C L ,et al. Compositional optimization of Mg-Sn-Al alloys for higher age hardening response [J]. Mater. Sci. Eng., 2013, A566: 22
[48] Huang X F, Zhang W Z, Ma Y S, et al. Enhancement of hardening and thermal resistance of Mg-Sn-based alloys by addition of Cu and Al [J]. Philos. Mag. Lett., 2014, 94: 460
[49] Huang X F, Zhang W Z. Improved age-hardening behavior of Mg-Sn-Mn alloy by addition of Ag and Zn [J]. Mater. Sci. Eng., 2012, A552: 211
[50] Shi Z Z, Zhang W Z. Designing Mg-Sn-Mn alloy based on crystallography of phase transformation [J]. Acta Metall. Sin., 2011, 47: 41
[50] (石章智, 张文征. 用相变晶体学指导Mg-Sn-Mn合金优化设计 [J]. 金属学报, 2011, 47: 41)
[51] Shi Z Z, Zhang W Z. Enhanced age-hardening response and microstructure study of an Ag-modified Mg-Sn-Zn based alloy [J]. Philos. Mag. Lett., 2013, 93: 473
[52] Jung J G, Park S H, You B S. Effect of aging prior to extrusion on the microstructure and mechanical properties of Mg-7Sn-1Al-1Zn alloy [J]. J. Alloys Compd., 2015, 627: 324
[53] Yang M B, Li H L, Duan C Y ,et al. Effects of minor Ti addition on as-cast microstructure and mechanical properties of Mg-3Sn-2Sr (wt.%) magnesium alloy [J]. J. Alloys Compd., 2013, 579: 92
[54] Luo D, Wang H Y, Chen L ,et al. Strong strain hardening ability in an as-cast Mg-3Sn-1Zn alloy [J]. Mater. Lett., 2013, 94: 51
[55] Fang C F, Meng L G, Wu Y F ,et al. Effect of Gd on the microstructure and mechanical properties of Mg-Sn-Zn-Al alloy [J]. Appl. Mech. Mater., 2013, 312: 411
[56] Qiu K Q, Liu B, You J H, et al. Microstructure and mechanical properties of Mg-5Sn-5Zn-xCa alloys [A]. Magnesium Technology2012 C]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2012: 537
[57] El Mahallawy N, Ahmed Diaa A, Akdesir M ,et al. Effect of Zn addition on the microstructure and mechanical properties of cast, rolled and extruded Mg-6Sn-xZn alloys [J]. Mater. Sci. Eng., 2017, A680: 47
[58] Cheng W L, Tian Q W, Huo R ,et al. Improved tensile properties of Mg-8Sn-1Zn alloy induced by minor Ti addition [J]. China Found., 2016, 13: 151
[59] Wang Q H, Shen Y Q, Jiang B ,et al. A micro-alloyed Mg-Sn-Y alloy with high ductility at room temperature [J]. Mater. Sci. Eng., 2018, A735: 131
[60] She J, Pan F, Zhang J, et al. Microstructure and mechanical properties of Mg-Al-Sn extruded alloys [J]. J. Alloys Compd., 2016, 657: 893
[61] Pan H C, Qin G W, Xu M, et al. Enhancing mechanical properties of Mg-Sn alloys by combining addition of Ca and Zn [J]. Mater. Des., 2015, 83: 736
[62] Pan H C, Qin G W, Huang Y M, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength [J]. Acta Mater., 2018, 149: 350
[63] Chen Y A, Jin L, Song Y ,et al. Effect of Zn on microstructure and mechanical property of Mg-3Sn-1Al alloys [J]. Mater. Sci. Eng., 2014, A612: 96
[64] Tang W N, Park S S, You B S. Effect of the Zn content on the microstructure and mechanical properties of indirect-extruded Mg-5Sn-xZn alloys [J]. Mater. Des., 2011, 32: 3537
[65] Kim B, Baek S M, Jeong H Y ,et al. Grain refinement and reduced yield asymmetry of extruded Mg-5Sn-1Zn alloy by Al addition [J]. J. Alloys Compd., 2016, 660: 304
[66] She J, Pan F S, Hu H H, et al. Microstructures and mechanical properties of as-extruded Mg-5Sn-1Zn-xAl (x=1, 3 and 5) alloys [J]. Prog. Nat. Sci. Mater. Int., 2015, 25: 267
[67] Chang L L, Tang H, Guo J. Strengthening effect of nano and micro-sized precipitates in the hot-extruded Mg-5Sn-3Zn alloys with Ca addition [J]. J. Alloys Compd., 2017, 703: 552
[68] Sasaki T T, Elsayed F R, Nakata T, et al. Strong and ductile heat-treatable Mg-Sn-Zn-Al wrought alloys [J]. Acta Mater., 2015, 99: 176
[69] Cheng W L, Kim H S, You B S ,et al. Strength and ductility of novel Mg-8Sn-1Al-1Zn alloys extruded at different speeds [J]. Mater. Lett., 2011, 65: 1525
[70] Cheng W L, Tian Q W, Yu H ,et al. Strengthening mechanisms of indirect-extruded Mg-Sn based alloys at room temperature [J]. J. Magn. Alloys, 2014, 2: 299
[71] Cheng W L, Bai Y, Wang L F ,et al. Strengthening effect of extruded Mg-8Sn-2Zn-2Al alloy: Influence of micro and nano-size Mg2Sn precipitates [J]. Materials, 2017, 10: 822
[72] Park S H, You B S. Effect of homogenization temperature on the microstructure and mechanical properties of extruded Mg-7Sn-1Al-1Zn alloy [J]. J. Alloys Compd., 2015, 637: 332
[73] Park S H, Lee J H, Yu H ,et al. Effect of cold pre-forging on the microstructure and mechanical properties of extruded Mg-8Sn-1Al-1Zn alloy [J]. Mater. Sci. Eng., 2014, A612: 197
[74] Wang Y J, Peng J, Zhong L P. On the microstructure and mechanical property of as-extruded Mg-Sn-Zn alloy with Cu addition [J]. J. Alloys Compd., 2018, 744: 234
[75] Sasaki T T, Yamamoto K, Honma T ,et al. A high-strength Mg-Sn-Zn-Al alloy extruded at low temperature [J]. Scr. Mater., 2008, 59: 1111
[76] Hu T, Xiao W L, Wang F, et al. Improving tensile properties of Mg-Sn-Zn magnesium alloy sheets using pre-tension and ageing treatment [J]. J. Alloys Compd., 2018, 735: 1494
[77] Kim Y K, Sohn S W, Kim D H ,et al. Role of icosahedral phase in enhancing the strength of Mg-Sn-Zn-Al alloy [J]. J. Alloys Compd., 2013, 549: 46
[78] Lee S G, Jeon J J, Park K C ,et al. Investigation on microstructure and creep properties of as-cast and aging-treated Mg-6Sn-5Al-2Si alloy [J]. Mater. Sci. Eng., 2011, A528: 5394
[79] Harosh S, Miller L, Levi G ,et al. Microstructure and properties of Mg-5.6%Sn-4.4%Zn-2.1%Al alloy [J]. J. Mater. Sci., 2007, 42: 9983
[80] Gorny A, Bamberger M, Katsman A. High temperature phase stabilized microstructure in Mg-Zn-Sn alloys with Y and Sb additions [J]. J. Mater. Sci., 2007, 42: 10014
[81] Liu C Q, Liu C L, Chen H W, et al. Heat-treatable Mg-9Al-6Sn-3Zn extrusion alloy [J]. J. Mater. Sci. Technol., 2018, 34: 284
[82] Wang J, Han J J, Jung I H ,et al. Thermodynamic optimizations on the binary Li-Sn system and ternary Mg-Sn-Li system [J]. Calphad, 2014, 47: 100
[83] Ma L N, Yang Y, Wang X L ,et al. Microstructure and mechanical properties of Mg-6Li-xAl-0.8Sn alloys [J]. Mater. Sci. Technol., 2018, 34: 2078
[84] Fu X S, Yang Y, Hu J W ,et al. Microstructure and mechanical properties of as-cast and extruded Mg-8Li-1Al-0.5Sn alloy [J]. Mater. Sci. Eng., 2018, A709: 247
[85] Yarkada? G, Kumruo?lu L C, ?evik H. The effect of cerium addition on microstructure and mechanical properties of high pressure die cast Mg-5Sn alloy [J]. Mater. Charact., 2018, 136: 152
[86] Yang M B, Qin C Y, Pan F S ,et al. Comparison of effects of cerium, yttrium and gadolinium additions on as-cast microstructure and mechanical properties of Mg-3Sn-1Mn magnesium alloy [J]. J. Rare Earths, 2011, 29: 550
[87] Liu H M, Chen Y G, Tang Y B, et al. The microstructure and mechanical properties of permanent-mould cast Mg-5wt%Sn-(0-2.6) wt%Di alloys [J]. Mater. Sci. Eng., 2006, A437: 348
[88] Hort N, Huang Y, Leil T A ,et al. Microstructural investigations of the Mg-Sn-xCa system [J]. Adv. Eng. Mater., 2006, 8: 359
[89] Suresh K, Rao K P, Prasad Y V R K ,et al. Microstructure and mechanical properties of as-cast Mg-Sn-Ca alloys and effect of alloying elements [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3604
[90] Rao K P, Prasad Y V R K, Dharmendra C ,et al. Review on hot working behavior and strength of calcium-containing magnesium alloys [J]. Adv. Eng. Mater., 2018, 20: 1701102
[91] Jiang Y, Chen Y A, Liu H ,et al. Microstructure evolution of as-cast Mg-5Sn alloy with Ba addition [J]. J. Alloys Compd., 2016, 657: 68
[92] Pan F S, Yang M B. Preliminary investigations about effects of Zr, Sc and Ce additions on as-cast microstructure and mechanical properties of Mg-3Sn-1Mn (wt.%) magnesium alloy [J]. Mater. Sci. Eng., 2011, A528: 4973
[93] Kim Y K, Kim D H, Kim W T, et al. Precipitation of D019 type metastable phase in Mg-Sn alloy [J]. Mater. Lett., 2013, 113: 50
[94] Gao X, He S M, Zeng X Q ,et al. Microstructure evolution in a Mg-15Gd-0.5Zr (wt.%) alloy during isothermal aging at 250 ℃ [J]. Mater. Sci. Eng., 2006, A431: 322
[95] Liu C Q, Chen H W, Liu H ,et al. Metastable precipitate phases in Mg-9.8 wt%Sn alloy [J]. Acta Mater., 2018, 144: 590
[96] Cannon P, Conlin E T. Magnesium compounds: New dense phases [J]. Science, 1964, 145: 487
[97] Fu H, Guo J X, Wu W S ,et al. High pressure aging synthesis of a hexagonal Mg2Sn strengthening precipitate in Mg-Sn alloys [J]. Mater. Lett., 2015, 157: 172
[98] Zhao C Y, Pan F S, Zhao S ,et al. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification [J]. Mater. Sci. Eng., 2015, C54: 245
[99] Kubásek J, Vojtěch D, Lipov J ,et al. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys [J]. Mater. Sci. Eng., 2013, C33: 2421
[100] Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents [J]. Adv. Mater., 2013, 25: 2577
[1] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[2] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[3] ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. 金属学报, 2019, 55(12): 1512-1518.
[4] Jinhui LIU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Comparative Study on Corrosion Behavior of Cast and Forged Mg-5Y-7Gd-1Nd-0.5Zr Alloys[J]. 金属学报, 2018, 54(8): 1141-1149.
[5] Feng LIU, Xu ZHANG, Yubing ZHANG. Unified Analysis of Non-Equilibrium Solidification and Solid-State Phase Transformations[J]. 金属学报, 2018, 54(5): 701-716.
[6] Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review[J]. 金属学报, 2018, 54(11): 1597-1617.
[7] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
[8] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
[9] Dean DENG, Sendong REN, Suo LI, Yanbin ZHANG. Influence of Multi-Thermal Cycle and Constraint Condition on Residual Stress in P92 Steel Weldment[J]. 金属学报, 2017, 53(11): 1532-1540.
[10] Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. 金属学报, 2017, 53(10): 1238-1264.
[11] Zhenliang LI,Fei LIU,Aiping YUAN,Baoyu DUAN,Xiaowei LI,Yiming LI. EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd[J]. 金属学报, 2016, 52(8): 938-944.
[12] Shuaiju MENG,Hui YU,Huixing ZHANG,Hongwei CUI,Zhifeng WANG,Weimin ZHAO. MICROSTRUCTURE AND MECHANICAL PROPERTIESOF EXTRUDED PURE Mg WITH Bi ADDITION[J]. 金属学报, 2016, 52(7): 811-820.
[13] Dean DENG,Yanbin ZHANG,Suo LI,Yangang TONG. INFLUENCE OF SOLID-STATE PHASE TRANSFOR-MATION ON RESIDUAL STRESS IN P92STEEL WELDED JOINT[J]. 金属学报, 2016, 52(4): 394-402.
[14] Tao JING, Sansan SHUAI, Mingyue WANG, Qiwei ZHENG. RESEARCH PROGRESS ON 3D DENDRITE MORPHO-LOGY AND ORIENTATION SELECTION DURING THE SOLIDIFICATION OF Mg ALLOYS: 3D EXPERIMENTAL CHARACTERIZATION AND PHASE FIELD MODELING[J]. 金属学报, 2016, 52(10): 1279-1296.
[15] Zhiwei SHAN, Boyu LIU. THE MECHANISM OF {101̅2} DEFORMATION TWINNING IN MAGNESIUM[J]. 金属学报, 2016, 52(10): 1267-1278.
No Suggested Reading articles found!