Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (12): 1656-1666    DOI: 10.11900/0412.1961.2022.00541
Research paper Current Issue | Archive | Adv Search |
Microstructure and Corrosion Resistance of Low-Carbon Martensitic Stainless Steel 0Cr13Ni4Mo with 3%Cu Addition
YANG Binbin1,2, SONG Yuanyuan1(), HAO Long1, JIANG Haichang1, RONG Lijian1
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
Cite this article: 

YANG Binbin, SONG Yuanyuan, HAO Long, JIANG Haichang, RONG Lijian. Microstructure and Corrosion Resistance of Low-Carbon Martensitic Stainless Steel 0Cr13Ni4Mo with 3%Cu Addition. Acta Metall Sin, 2024, 60(12): 1656-1666.

Download:  HTML  PDF(3971KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low-carbon martensitic stainless steel 0Cr13Ni4Mo is widely used in hydraulic turbine runners, oil and gas storage, high-pressure pipes in power generation, and other fields owing to its high strength, good corrosion resistance, and good welding properties. However, to enhance its performance under different environments, there is a need to improve its strength and corrosion resistance. Previous studies have found that adding Cu to 0Cr13Ni4Mo steel enhances its strength through the formation of Cu-rich precipitation. However, the impact of Cu on the corrosion behavior of the 0Cr13Ni4Mo steel is not yet well understood. This study aims to investigate the effect of adding 3%Cu (mass fraction) on the microstructure and corrosion resistance of low-carbon martensitic stainless steel 0Cr13Ni4Mo using various techniques such as SEM, XRD, TEM, APT, and electrochemical testing. The results show that after solution treatment at 1050oC, Cu is uniformly distributed on the lath martensite matrix. After tempering at 400oC, Cu forms minute nanoclusters with a large number of Fe atoms segregated. On the other hand, tempering at 500oC leads to the growth of Cu-rich precipitates with a size of 5-10 nm, where Cu atoms are mainly segregated at the core of the precipitates and are in a coherent relationship with the martensitic matrix. Carbides grow from Fe-rich nanoclusters to Cr-rich precipitates during the tempering process. The addition of 3%Cu to low-carbon martensitic stainless steel shows excellent corrosion resistance after tempering at 500oC. This may be due to the emission of Cr atoms to the surrounding matrix during the growth of Cu-rich precipitates, which reduces the Cr-depleted zone caused by Cr-rich carbides in the matrix, thus reducing the corrosion sensitivity of 0Cr13Ni4Mo martensitic stainless steel with 3%Cu addition. These findings provide a better understanding of the role of Cu-rich precipitates on the corrosion performance of low-carbon martensitic stainless steels and provide guidance for the design of corrosion resistant steels.

Key words:  0Cr13Ni4Mo      Cu-rich precipitation      corrosion resistance      atomic probe tomography     
Received:  24 October 2022     
ZTFLH:  TG142  
Fund: Industrialized Science and Technology Cooperation Between Jilin Province and CAS(2024SYHZ0004);Natural Science Foundation of Liaoning Province(2020-MS-08)
Corresponding Authors:  SONG Yuanyuan, assistant professor, Tel: (024)23971976, E-mail: songyuanyuan@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00541     OR     https://www.ams.org.cn/EN/Y2024/V60/I12/1656

SteelCCrNiMoSiMnCuPSFe

0Cu

3Cu

0.051

0.056

12.87

13.03

4.06

4.12

0.47

0.48

0.43

0.51

0.68

0.66

0.01

2.82

0.005

0.005

0.0041

0.0050

Bal.

Bal.

Table 1  Chemical compositions of two low-carbon martensitic stainless steels
Fig.1  SEM images of 0Cu (a-c) and 3Cu (d-f) steels after different heat treatments (a, d) solution treated at 1050oC (b, e) tempered at 400oC (c, f) tempered at 500oC
Fig.2  XRD spectra of 0Cu and 3Cu steels after different heat treatments
Fig.3  TEM analyses of the 3Cu steel tempered at 500oC for 2 h
(a) bright field TEM image
(b) corresponding EDS mapping of square area in Fig.3a of Cu
(c) HRTEM image of the matrix and Cu-rich precipitate
(d, f) enlarged HRTEM images of the matrix (d) and Cu-rich precipitate (f) in Fig.3c, respectively
(e, g) corresponding fast Fourier transformation (FFT) patterns of Figs.3d (e) and f (g), respectively
Fig.4  Potentiodynamic polarization curves of 0Cu and 3Cu steels after different heat treatments in 3.5%NaCl solution (E—potential, i—current density)
SteelHeat treatmentEcorr / VSCEicorr / (nA·cm-2)Eb / VSCE
0CuSolution treated-0.17362.1-0.019
0Cu400oC tempered-0.16166.60.069
0Cu500oC tempered-0.18165.70.097
3CuSolution treated-0.16264.00.080
3Cu400oC tempered-0.14457.50.051
3Cu500oC tempered-0.14742.30.109
Table 2  Electrochemical parameters of potentiodynamic polarization curves of 0Cu and 3Cu steels after different heat treatments in 3.5%NaCl solution
Fig.5  Nyquist (a) and Bode (b) plots of 0Cu and 3Cu steels after different heat treatments in 3.5%NaCl solution (Z—impedance, Z'—real part of impedance, Z''—imaginary part of impedance, f—frequency)
Fig.6  Equivalent circuit diagram of 0Cu and 3Cu stainless steels in 3.5%NaCl solution (Rs—solution resistance, Rf—surface passivation film resistance, Qf—surface passivation film capacitance, Rct—double layer charge transfer resistance, Cdl—double layer capacitance)
SteelHeat treatment

Rs

Ω·cm2

Rf

kΩ·cm2

Qf

10-5 Ω-1·cm-2·s-1

nf

Rct

Ω·cm2

Cdl

10-5 Ω-1·cm-2·s-1

0CuSolution treated4.00838.895.9120.8852320.667.02
0Cu400oC tempered4.12424.335.8380.8811194.671.53
0Cu500oC tempered4.76613.746.4020.8659211.357.93
3CuSolution treated3.88011.565.2930.8712322.099.60
3Cu400oC tempered4.12926.165.8660.8792331.672.57
3Cu500oC tempered3.95448.355.8340.8643447.274.91
Table 3  Equivalent circuit fitting parameters of 0Cu and 3Cu steels after different heat treatments in 3.5%NaCl solution
Fig.7  Atom distribution maps of Fe, Cr, Ni, Mn, Mo, C, and Cu in 3Cu steel solution treated at 1050oC for 2 h (a) and the nearest neighbor count distributions of Cu (b) (d-pair—distance between two atoms)
Fig.8  Atom distribution maps of Fe, Cr, Ni, Mn, Mo, C, and Cu in 3Cu steel 400oC tempered for 2 h (a), isoconcentration surface distribution of 1.3%C (atomic fraction) and corresponding C clusters distribution (b), and isoconcentration surface distribution of 4%Cu (atomic fraction) and corresponding Cu cluster distribution (c)
Fig.9  Atom distribution maps of Fe, Cr, Ni, Mn, Mo, C, and Cu in 3Cu stainless steel 500oC tempered for 2 h (a), isoconcentration surface distribution of 3%C (atomic fraction) and corresponding C clusters distribution (b), and isoconcentration surface distribution of 15%Cu (atomic fraction) and corresponding Cu cluster distribution (c)
Fig.10  Schematics of the corrosion mechanism of 0Cu (a) and 3Cu (b) steels tempered at 500oC
1 Ye W P, Liu Z L. Effect of structure of martensitic stainless cast steel ZG06Cr13Ni4Mo on properties [J]. Spec. Steel, 1998, 19(5): 13
叶卫平, 刘祖林. ZG06Cr13Ni4Mo马氏体不锈铸钢组织对性能的影响 [J]. 特殊钢, 1998, 19(5): 13
2 Zhou S F, Wang Y C, Li X Y, et al. Microstructure and mechanical properties in simulated HAZ of 0Cr13Ni5Mo martensitic stainless steel [J]. Trans. China Weld. Inst., 2004, 25(4): 63
周世锋, 王昱成, 李向阳 等. ZG0Cr13Ni5Mo马氏体不锈钢模拟焊接HAZ组织与性能 [J]. 焊接学报, 2004, 25(4): 63
3 Deleu E, Dhooge A. Weldability assessment of thick super-martensitic 13Cr stainless steel welds made with matching consumables [J]. Weld World, 2005, 49(5): 34
4 Bhagat A N, Pabi S K, Ranganathan S, et al. Aging behaviour in copper bearing high strength low alloy steels [J]. ISIJ Int., 2004, 44: 115
5 Fine M E, Isheim D. Origin of copper precipitation strengthening in steel revisited [J]. Scr. Mater., 2005, 53: 115
6 Isheim D, Gagliano M S, Fine M E, et al. Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale [J]. Acta Mater., 2006, 54: 841
7 Heo Y U, Kim Y K, Kim J S, et al. Phase transformation of Cu precipitates from bcc to fcc in Fe-3Si-2Cu alloy [J]. Acta Mater., 2013, 61: 519
8 Wen Y R, Hirata A, Zhang Z W, et al. Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5Cu-1.5Mn-4.0Ni-1.0Al multicomponent ferritic alloy [J]. Acta Mater., 2013, 61: 2133
9 Wang Z M, Li H, Shen Q, et al. Nano-precipitates evolution and their effects on mechanical properties of 17-4 precipitation-hardening stainless steel [J]. Acta Mater., 2018, 156: 158
10 Isheim D, Kolli R P, Fine M E, et al. An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels [J]. Scr. Mater., 2006, 55: 35
11 Zhang Z W, Liu C T, Wang X L, et al. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions [J]. Acta Mater., 2012, 60: 3034
12 Jiao Z B, Luan J H, Zhang Z W, et al. Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels [J]. Acta Mater., 2013, 61: 5996
13 Zhang Z W, Liu C T, Miller M K, et al. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys [J]. Sci. Rep., 2013, 3: 1327
doi: 10.1038/srep01327 pmid: 23429646
14 Jiao Z B, Luan J H, Miller M K, et al. Co-precipitation of nanoscale particles in steels with ultra-high strength for a new era [J]. Mater. Today, 2017, 20: 142
15 Zhang Z Y, Chai F, Luo X B, et al. The strengthening mechanism of Cu bearing high strength steel as-quenched and tempered and Cu precipitation behavior in steel [J]. Acta Metall. Sin., 2019, 55: 783
doi: 10.11900/0412.1961.2018.00485
张正延, 柴 锋, 罗小兵 等. 调质态含Cu高强钢的强化机理及钢中Cu的析出行为 [J]. 金属学报, 2019, 55: 783
doi: 10.11900/0412.1961.2018.00485
16 Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
17 Peng X Y, Zhou X L, Hua X Z. Aging hardening behavior and corrosion resistance of 15-5PH stainless steel [J]. Chin. J. Nonferrous Met., 2017, 27: 988
彭新元, 周贤良, 华小珍. 15-5PH不锈钢的时效硬化行为及耐蚀性能 [J]. 中国有色金属学报, 2017, 27: 988
18 Jang Y W, Hong J H, Kim J G. Effects of copper on the corrosion properties of low-alloy steel in an acid-chloride environment [J]. Met. Mater. Int., 2009, 15: 623
19 Brigham R J, Tozer E W. Effect of alloying additions on the pitting resistance of 18% Cr austenitic stainless steel [J]. Corrosion, 1974, 30: 161
20 Lizlovs E A. Effects of Mo, Cu, Si and P on anodic behavior of 17Cr steels [J]. Corrosion, 1966, 22: 297
21 Ma J, Song Y Y, Jiang H C, et al. Effect of Cu on the microstructure and mechanical properties of a low-carbon martensitic stainless steel [J]. Materials, 2022, 15: 8849
22 Marquis E A, Bachhav M, Chen Y M, et al. On the current role of atom probe tomography in materials characterization and materials science [J]. Curr. Opin. Solid State Mater. Sci., 2013, 17: 217
23 Barroo C, Akey A J, Bell D C. Atom probe tomography for catalysis applications: A review [J]. Appl. Sci., 2019, 9: 2721
24 Bagot P A J, Silk O B W, Douglas J O, et al. An atom probe tomography study of site preference and partitioning in a nickel-based superalloy [J]. Acta Mater., 2017, 125: 156
25 Larson D J, Prosa T J, Ulfig R M, et al. Local Electrode Atom Probe Tomography: A User's Guide [M]. New York: Springer, 2013: 238
26 Chen W J, Hao L, Dong J H, et al. Effect of SO2 on corrosion evolution of Q235B steel in simulated coastal-industrial atmosphere [J]. Acta Metall. Sin., 2014, 50: 802
陈文娟, 郝 龙, 董俊华 等. 模拟工业-海岸大气中SO2对Q235B钢腐蚀行为的影响 [J]. 金属学报, 2014, 50: 802
doi: 10.3724/SP.J.1037.2013.00738
27 Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
28 Thee C, Hao L, Dong J H, et al. Numerical approach for atmospheric corrosion monitoring based on EIS of a weathering steel [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 261
29 Pan C C, Zhang X, Yang F, et al. Corrosion and cavitation erosion behavior of GLNN/Cu composite in simulated seawater [J]. Acta Metall. Sin., 2022, 58: 599
doi: 10.11900/0412.1961.2021.00333
潘成成, 张 翔, 杨 帆 等. 三维石墨烯/Cu复合材料在模拟海水环境中的腐蚀和空蚀行为 [J]. 金属学报, 2022, 58: 599
doi: 10.11900/0412.1961.2021.00333
30 Song Y Y, Zhao M J, Rong L J. Study on the precipitation of γ' in a Fe-Ni base alloy during ageing by APT [J]. Acta Metall. Sin., 2018, 54: 1236
宋元元, 赵明久, 戎利建. Fe-Ni基合金时效过程中γ'相析出的原子探针层析技术研究 [J]. 金属学报, 2018, 54: 1236
doi: 10.11900/0412.1961.2017.00563
31 Lu S Y, Yao K F, Chen Y B, et al. The effect of tempering temperature on the microstructure and electrochemical properties of a 13wt.% Cr-type martensitic stainless steel [J]. Electrochim. Acta, 2015, 165: 45
32 Wei G Y, Lu S Y, Li S X, et al. Unmasking of the temperature window and mechanism for “loss of passivation” effect of a Cr-13 type martensite stainless steel [J]. Corros. Sci., 2020, 177: 108951
33 Nakamichi H, Sato K, Miyata Y, et al. Quantitative analysis of Cr-depleted zone morphology in low carbon martensitic stainless steel using FE-(S)TEM [J]. Corros. Sci., 2008, 50: 309
34 Kaneko K, Fukunaga T, Yamada K, et al. Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel [J]. Scr. Mater., 2011, 65: 509
35 Si Y L, Xue J T, Wang X F, et al. Effect of Cr addition on the corrosion behavior of twinning-induced plasticity steel [J]. Acta Metall. Sin., 2023, 59: 905
doi: 10.11900/0412.1961.2021.00418
司永礼, 薛金涛, 王幸福 等. Cr添加对孪生诱发塑性钢腐蚀行为的影响 [J]. 金属学报, 2023, 59: 905
doi: 10.11900/0412.1961.2021.00418
36 Olsson C O A, Landolt D. Passive films on stainless steels—Chemistry, structure and growth [J]. Electrochim. Acta, 2003, 48: 1093
37 Milošev I, Kovačević N, Kovač J, et al. The roles of mercapto, benzene and methyl groups in the corrosion inhibition of imidazoles on copper: I. Experimental characterization [J]. Corros. Sci., 2015, 98: 107
[1] MENG Ze, LI Guangqiang, LI Tengfei, ZHENG Qing, ZENG Bin, LIU Yu. Effect of Ce on Cleanliness, Microstructure, and Pitting Corrosion Resistance of 75Cr1 Steel[J]. 金属学报, 2024, 60(9): 1229-1238.
[2] ZHOU Xiaowei, JING Xueyan, FU Ruixue, WANG Yuxin. Codeposition Behaviors and Anti-Corrosive Mechanism of Ni-Co-Zn Ternary Alloys[J]. 金属学报, 2024, 60(11): 1499-1511.
[3] ZENG Yunpeng, YAN Wei, SHI Xianbo, YAN Maocheng, SHAN Yiyin, YANG Ke. Effect of Copper Content on the MIC Resistance in Pipeline Steel[J]. 金属学报, 2024, 60(1): 43-56.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[6] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[7] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[8] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[11] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[12] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[13] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[14] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[15] Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear[J]. 金属学报, 2018, 54(11): 1567-1585.
No Suggested Reading articles found!