|
|
Effect and Mechanism of B Microalloying on the Microstructure and Mechanical Properties of CoNiV Medium-Entropy Alloy |
NAN Yong1, GUAN Xu1, YAN Haile1( ), TANG Shuai2, JIA Nan1( ), ZHAO Xiang1, ZUO Liang1 |
1 Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
|
Cite this article:
NAN Yong, GUAN Xu, YAN Haile, TANG Shuai, JIA Nan, ZHAO Xiang, ZUO Liang. Effect and Mechanism of B Microalloying on the Microstructure and Mechanical Properties of CoNiV Medium-Entropy Alloy. Acta Metall Sin, 2024, 60(12): 1647-1655.
|
Abstract CoNiV is a novel medium-entropy alloy with excellent mechanical properties. Currently, alloying CoNiV with Al has been extensively employed to improve its mechanical strength. Unfortunately, the microstructure of CoNiV changes from a single phase to a dual phase due to the addition of Al, which considerably reduces its corrosion resistance. Therefore, developing new strategies to improve its mechanical properties is imperative. In this study, the microstructure and static tensile mechanical properties of (CoNiV)100 - x B x alloys (x = 0, 0.1, and 0.2, atomic fraction, %) are systematically investigated. The results revealed that the strength and ductility of CoNiV can be significantly improved by doping a small amount of B. With the introduction of 0.2%B, the yield strength, ultimate tensile strength, and elongation of CoNiV are improved, increasing by 12%, 10%, and 30%, respectively. The crystal structure, grain size, crystallographic orientation, and plastic deformation mechanism of CoNiV are not affected due to microalloying with B. At room temperature, (CoNiV)99.8B0.2 exhibits fcc structure. The plastic deformation mechanism during static tensile deformation is manifested as dislocation slip, while martensitic transformation and twin effects induced by stress are not observed. The results of the nanohardness tests indicated that doping with trace amounts of B could remarkably enhance the grain/twin boundary hardness, confirming the grain/twin boundary strengthening effect of B on CoNiV. The strengthening of grain/twin boundaries leads to increased resistance of dislocations and provides the ability to hinder crack expansion, resulting in the simultaneous enhancement of the strength and ductility of (CoNiV)99.8B0.2. Moreover, the B element dissolved into the matrix would serve as a pinning site for dislocation, thus contributing to the increased strength of CoNiV.
|
Received: 10 November 2022
|
|
Fund: National Key Research and Development Program of China(2021YFA1200203);Fundamental Research Funds for the Central Universities(N2202015) |
Corresponding Authors:
YAN Haile, associate professor, Tel: (024)83681723, E-mail: yanhaile@mail.neu.edu.cn JIA Nan, professor, Tel: (024)83681723, E-mail: jian@atm.neu.edu.cn
|
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
2 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
3 |
Zhang H F, Yan H L, Fang F, et al. Orientation-dependent mechanical responses and plastic deformation mechanisms of FeMnCoCrNi high-entropy alloy: A molecular dynamics study [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1511
|
4 |
Shi P J, Li R G, Li Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys [J]. Science, 2021, 373: 912
doi: 10.1126/science.abf6986
pmid: 34413235
|
5 |
Wang Z W, Lu W J, An F C, et al. High stress twinning in a compositionally complex steel of very high stacking fault energy [J]. Nat. Commun., 2022, 13: 3598
doi: 10.1038/s41467-022-31315-2
pmid: 35739123
|
6 |
Zhang T, Wu Y T, Yu Y H, et al. High throughput screening driven discovery of Mn5Co10Fe30Ni55O x as electrocatalyst for water oxidation and electrospinning synthesis [J]. Appl. Surf. Sci., 2022, 588: 152959
|
7 |
Zhang H F, Yan H L, Yu H, et al. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48: 146
doi: 10.1016/j.jmst.2020.03.010
|
8 |
He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
|
9 |
Wang M L, Lu Y P, Wang T M, et al. A novel bulk eutectic high-entropy alloy with outstanding as-cast specific yield strengths at elevated temperatures [J]. Scr. Mater., 2021, 204: 114132
|
10 |
Zhang H F, Yan H L, Fang F, et al. Molecular dynamic simulations of deformation mechanisms for FeMnCoCrNi high-entropy alloy bicrystal micropillars [J]. Acta Metall. Sin., 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
|
|
张海峰, 闫海乐, 方 烽 等. FeMnCoCrNi高熵合金双晶微柱变形机制的分子动力学模拟 [J]. 金属学报, 2023, 59: 1051
doi: 10.11900/0412.1961.2021.00517
|
11 |
Zhao Y L, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Mater., 2017, 138: 72
|
12 |
Gludovatz B, Hohenwarter A, Thurston K V S, et al. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures [J]. Nat. Commun., 2016, 7: 10602
doi: 10.1038/ncomms10602
pmid: 26830651
|
13 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
14 |
Sohn S S, da Silva A K, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
|
15 |
Park J M, Yang D C, Kim H J, et al. Ultra-strong and strain-hardenable ultrafine-grained medium-entropy alloy via enhanced grain-boundary strengthening [J]. Mater. Res. Lett., 2021, 9: 315
|
16 |
Yin B L, Maresca F, Curtin W A. Vanadium is an optimal element for strengthening in both fcc and bcc high-entropy alloys [J]. Acta Mater., 2020, 188: 486
|
17 |
Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
|
18 |
Chen X F, Wang Q, Cheng Z Y, et al. Direct observation of chemical short-range order in a medium-entropy alloy [J]. Nature, 2021, 592: 712
|
19 |
Yang D C, Jo Y H, Ikeda Y, et al. Effects of cryogenic temperature on tensile and impact properties in a medium-entropy VCoNi alloy [J]. J. Mater. Sci. Technol., 2021, 90: 159
doi: 10.1016/j.jmst.2021.02.034
|
20 |
Luo H, Sohn S S, Lu W J, et al. A strong and ductile medium-entropy alloy resists hydrogen embrittlement and corrosion [J]. Nat. Commun., 2020, 11: 3081
doi: 10.1038/s41467-020-16791-8
pmid: 32555177
|
21 |
Sohn S S, Kim D G, Jo Y H, et al. High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases [J]. Acta Mater., 2020, 194: 106
|
22 |
Jang T J, Choi W S, Kim D W, et al. Shear band-driven precipitate dispersion for ultrastrong ductile medium-entropy alloys [J]. Nat. Commun., 2021, 12: 4703
doi: 10.1038/s41467-021-25031-6
pmid: 34349105
|
23 |
Nutor R K, Cao Q P, Wei R, et al. A dual-phase alloy with ultrahigh strength-ductility synergy over a wide temperature range [J]. Sci. Adv., 2021, 7: eabi4404
|
24 |
Tian J, Tang K, Wu Y K, et al. Effects of Al alloying on microstructure and mechanical properties of VCoNi medium entropy alloy [J]. Mater. Sci. Eng., 2021, A811: 141054
|
25 |
Tu J, Yang W H, Xu K, et al. Effect of Ta content on stacking fault energy and microstructure characteristics of (VCoNi)100 - X Ta X (X = 0, 0.05, 0.5 and 1) medium entropy alloy [J]. Mater. Lett., 2021, 305: 130770
|
26 |
Han Z H, Guo Y N, Yang J, et al. Effect of Al addition on the corrosion behavior of the VCoNi medium-entropy alloys [J]. J. Alloys Compd., 2022, 920: 165954
|
27 |
Kontis P, Yusof H A M, Pedrazzini S, et al. On the effect of boron on grain boundary character in a new polycrystalline superalloy [J]. Acta Mater., 2016, 103: 688
|
28 |
Seol J B, Bae J W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys [J]. Acta Mater., 2018, 151: 366
|
29 |
Seol J B, Bae J W, Kim J G, et al. Short-range order strengthening in boron-doped high-entropy alloys for cryogenic applications [J]. Acta Mater., 2020, 194: 366
doi: 10.1016/j.actamat.2020.04.052
|
30 |
Li G R, Gao L P, Wang H M, et al. Effects of boron on microstructure and properties of microwave sintered FeCoNi1.5CuY0.2 high-entropy alloy [J]. J. Alloys Compd., 2021, 866: 157848
|
31 |
Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy [J]. Int. J. Refract. Met. Hard Mater., 2021, 100: 105636
|
32 |
Yang Z, Cong D Y, Yuan Y, et al. Ultrahigh cyclability of a large elastocaloric effect in multiferroic phase-transforming materials [J]. Mater. Res. Lett., 2019, 7: 137
doi: 10.1080/21663831.2019.1566182
|
33 |
Yan H L, Liu H X, Zhao Y, et al. Impact of B alloying on ductility and phase transition in the Ni-Mn-based magnetic shape memory alloys: Insights from first-principles calculation [J]. J. Mater. Sci. Technol., 2021, 74: 27
|
34 |
Huang X M, Zhao Y, Yan H L, et al. A multielement alloying strategy to improve elastocaloric and mechanical properties in Ni-Mn-based alloys via copper and boron [J]. Scr. Mater., 2020, 185: 94
|
35 |
Pujar M G, Laha K, Dayal R K, et al. Studies on the effect of B and B + Ce additions on the electrochemical corrosion behaviour of 9Cr-1Mo using electrochemical noise (EN) technique [J]. Int. J. Electrochem. Sci., 2008, 3: 891
|
36 |
Wang L. Mechanical Properties of Materials [M]. 3rd Ed., Shenyang: Northeastern University Press, 2014: 80
|
|
王 磊. 材料的力学性能 [M]. 第 3版, 沈阳: 东北大学出版社, 2014: 80
|
37 |
Jia N, Roters F, Eisenlohr P, et al. Non-crystallographic shear banding in crystal plasticity FEM simulations: Example of texture evolution in α-brass [J]. Acta Mater., 2012, 60: 1099
|
38 |
Ullman N, Luko S. Statistical standards and ASTM [J]. Qual. Eng., 2010, 22: 358
|
39 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
40 |
Li Z M, Tasan C C, Pradeep K G, et al. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior [J]. Acta Mater., 2017, 131: 323
|
41 |
Su J, Raabe D, Li Z M. Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy [J]. Acta Mater., 2019, 163: 40
|
42 |
Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
|
王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
43 |
Tang Z Y, Wu Z Q, Zan N, et al. Microstructure evolution and deformation behavior of high manganese TRIP/TWIP symbiotic effect steels under high-speed deformation [J]. Acta Metall. Sin., 2011, 47: 1426
|
|
唐正友, 吴志强, 昝 娜 等. 高锰TRIP/TWIP效应共生钢高速变形过程中的组织演变及变形行为 [J]. 金属学报, 2011, 47: 1426
doi: 10.3724/SP.J.1037.2011.00311
|
44 |
Deng Y, Tasan C C, Pradeep K G, et al. Design of a twinning-induced plasticity high entropy alloy [J]. Acta Mater., 2015, 94: 124
|
45 |
Li J G, Ding Y J, Peng X D, et al. Effects of water quenching process on the microstructure and mechanical properties of TWIP steel [J]. Acta Metall. Sin., 2010, 46: 221
|
|
李激光, 丁亚杰, 彭兴东 等. 水淬工艺对TWIP钢显微组织和力学性能的影响 [J]. 金属学报, 2010, 46: 221
doi: 10.3724/SP.J.1037.2009.00180
|
46 |
Sanyal S, Waghmare U V, Subramanian P R, et al. Effect of dopants on grain boundary decohesion of Ni: A first-principles study [J]. Appl. Phys. Lett., 2008, 93: 223113
|
47 |
Stinville J C, Gallup K, Pollock T M. Transverse creep of nickel-base superalloy bicrystals [J]. Metall. Mater. Trans., 2015, 46A: 2516
|
48 |
Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms at intermediate temperatures in René 88 DT [J]. Acta Mater., 2005, 53: 3041
|
49 |
Raabe D, Herbig M, Sandlöbes S, et al. Grain boundary segregation engineering in metallic alloys: A pathway to the design of interfaces [J]. Curr. Opin. Solid State Mater. Sci., 2014, 18: 253
|
50 |
Wu R Q, Freeman A J, Olson G B. First principles determination of the effects of phosphorus and boron on iron grain boundary cohesion [J]. Science, 1994, 265: 376
pmid: 17838041
|
51 |
Messmer R P, Briant C L. The role of chemical bonding in grain boundary embrittlement [J]. Acta Metall., 1982, 30: 457
|
52 |
Basu I, Chen M, Wheeler J, et al. Segregation-driven exceptional twin-boundary strengthening in lean Mg-Zn-Ca alloys [J]. Acta Mater., 2022, 229: 117746
|
53 |
Kraft R H, Molinari J F. A statistical investigation of the effects of grain boundary properties on transgranular fracture [J]. Acta Mater., 2008, 56: 4739
|
54 |
Orowan E. Fracture and strength of solids [J]. Rep. Prog. Phys., 1949, 12: 185
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|